Concentrating solar power (CSP) is an effective means of converting solar energy into electricity with an energy storage capability for continuous, dispatchable, renewable power generation. However, challenges with current CSP systems include high initial capital cost and electricity price, and advances are needed to increase outlet temperature to drive high-efficiency power cycles while simultaneously maintaining stability of the heat-transfer medium and thermal performance of the receiver. Solid-particle-based CSP systems are one alternative projected to have significant cost and performance advantages over current nitrate-based molten salt systems. NREL is developing a design that uses gas/solid, two-phase flow as the heat-transfer fluid (HTF) and separated solid particles as the storage medium. A critical component in the system is a novel near-blackbody (NBB) enclosed particle receiver that uses an array of absorber tubes with a granular medium flowing downward through channels between tubes. Development of the NBB enclosed particle receiver necessitates detailed investigation of the dimensions of the receiver, particle-flow conditions, and heat-transfer coefficients. This study focuses on simulation and analysis of granular flow patterns and the resulting convective and conductive heat transfer to the particulate phase using Eulerian–Eulerian two-fluid modeling techniques. Heat-transfer coefficients in regions with good particle/wall contact are predicted to exceed 1000 W/m2 K. However, simulations predict particle/wall separation in vertical flow channels and a resultant reduction in heat transfer. Particle-flow visualization experiments confirm particle/wall separation, but also exhibit complex periodic behavior and flow instability that create intermittent side-wall contact and enhance heat transfer above that predicted by the theoretical simulations.

References

1.
Kolb
,
G. J.
,
Ho
,
C. K.
,
Mancini
,
T. R.
, and
Gary
,
J.
,
2011
, “
Power Tower Technology Roadmap and Cost Reduction Plan
,” Sandia National Laboratories, Albuquerque, NM,
Report No.
SAND2011-2419.
2.
Siegel
,
N. P.
,
Ho
,
C. K.
,
Khalsa
,
S. S.
, and
Kolb
,
G. J.
,
2010
, “
Development and Evaluation of a Prototype Solid Particle Receiver: On-Sun Testing and Model Validation
,”
ASME J. Sol. Energy Eng.
,
132
(
2
), p.
021008
.
3.
Roger
,
M.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2011
, “
Face-Down Solid Particle Receiver Using Recirculation
,”
ASME J. Solar Energy Eng.
,
133
(
3
), p.
031009
.
4.
Lee
,
T.
,
Lim
,
S.
,
Shin
,
S.
,
Sadowski
,
D. L.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Al-Ansary
,
H.
,
2015
, “
Numerical Simulation of Particulate Flow in Interconnected Porous Media for Central Particle-Heating Receiver Applications
,”
Sol. Energy
,
113
, pp.
14
24
.
5.
Ho
,
C.
,
Christian
,
J.
,
Gill
,
D.
,
Moya
,
A.
,
Jeter
,
S.
,
Abdel-Khalik
,
S.
,
Sadowski
,
D.
,
Siegel
,
N.
,
Al-Ansary
,
H.
,
Amsbeck
,
L.
,
Gobereit
,
B.
, and
Buck
,
R.
,
2014
, “
Technology Advancements for Next Generation Falling Particle Receivers
,”
Energy Procedia
,
49
, pp.
398
407
.
6.
Van Wachem
,
B. G. M.
, and
Almstedt
,
A. E.
,
2003
, “
Methods for Multiphase Computational Fluid Dynamics
,”
Chem. Eng. J.
,
96
(
1–3
), pp.
81
98
.
7.
Ibsen
,
C. H.
,
Helland
,
E.
,
Hjertager
,
B. H.
,
Solberg
,
T.
,
Tadrist
,
L.
, and
Occelli
,
R.
,
2004
, “
Comparison of Multifluid and Discrete Particle Modelling in Numerical Predictions of Gas Particle Flow in Circulating Fluidised Beds
,”
Powder Technol.
,
149
(
1
), pp.
29
41
.
8.
Gera
,
D.
,
Syamlal
,
M.
, and
O'Brien
,
T. J.
,
2004
, “
Hydrodynamics of Particle Segregation in Fluidized Beds
,”
Int. J. Multiphase Flow
,
30
(
4
), pp.
419
428
.
9.
Benyahia
,
S.
,
Arastoopour
,
H.
,
Knowlton
,
T. M.
, and
Massah
,
H.
,
2000
, “
Simulation of Particles and Gas Flow Behavior in the Riser Section of a Circulating Fluidized Bed Using the Kinetic Theory Approach for the Particulate Phase
,”
Powder Technol.
,
112
(
1–2
), pp.
24
33
.
10.
Goldschmidt
,
M. J. V.
,
Kuipers
,
J. A. M.
, and
Van Swaaij
,
W. P. M.
,
2001
, “
Hydrodynamic Modelling of Dense Gas-Fluidised Beds Using the Kinetic Theory of Granular Flow: Effect of Coefficient of Restitution on Bed Dynamics
,”
Chem. Eng. Sci.
,
56
(
2
), pp.
571
578
.
11.
Patil
,
D. J.
,
Smit
,
J.
,
Annaland
,
M. V.
, and
Kuipers
,
J.
,
2006
, “
Wall-to-Bed Heat Transfer in Gas-Solid Bubbling Fluidized Beds
,”
AIChE J.
,
52
(
1
), pp.
58
74
.
12.
Samuelsberg
,
A.
, and
Hjertager
,
B. H.
,
1996
, “
An Experimental and Numerical Study of Flow Patterns in a Circulating Fluidized Bed Reactor
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
575
591
.
13.
Schmidt
,
A.
, and
Renz
,
U.
,
2000
, “
Numerical Prediction of Heat Transfer in Fluidized Beds by a Kinetic Theory of Granular Flows
,”
Int. J. Therm. Sci.
,
39
(
9–11
), pp.
871
885
.
14.
Gidaspow
,
D.
,
1994
,
Multiphase Flow and Fluidization
,
Academic Press
,
Boston, MA
.
15.
Gidaspow
,
D.
,
Bezburuah
,
R.
, and
Ding
,
J.
,
1992
, “
Hydrodynamics of Circulating Fluidized Beds: Kinetic Theory Approach
,”
Fluidization VII, Engineering Foundation Conference on Fluidization
, pp.
75
82
.
16.
Wen
,
C. Y.
, and
Yu
,
Y. H.
,
1966
, “
Mechanics of Fluidization
,”
Chem. Eng. Prog., Symp. Ser.
,
62
, pp.
100
111
.
17.
Ergun
,
S.
,
1952
, “
Fluid Flow Through Packed Columns
,”
Chem. Eng. Prog.
,
48
(
2
), pp.
89
94
.
18.
Gunn
,
D. J.
,
1978
, “
Transfer of Heat or Mass to Particles in Fixed and Fluidized-Beds
,”
Int. J. Heat Mass Transfer
,
21
(
4
), pp.
467
476
.
19.
Ding
,
J.
, and
Gidaspow
,
D.
,
1990
, “
A Bubbling Fluidization Model Using Kinetic-Theory of Granular Flow
,”
AIChE J.
,
36
(
4
), pp.
523
538
.
20.
Syamlal
,
M.
,
Rogers
,
W.
, and
O'Brien
,
T. J.
,
1993
, “
MFIX Documentation: Theory Guide
,” U.S. Department of Energy, Morgantown Energy Technology Center, Morgantown, WV,
Report No.
DOE/METC-94/1004.
21.
Lun
,
C. K. K.
,
Savage
,
S. B.
,
Jeffrey
,
D. J.
, and
Chepurniy
,
N.
,
1984
, “
Kinetic Theories for Granular Flow-Inelastic Particles in Couette-Flow and Slightly Inelastic Particles in a General Flowfield
,”
J. Fluid Mech.
,
140
, pp.
223
256
.
22.
Schaeffer
,
D. G.
,
1987
, “
Instability in the Evolution-Equations Describing Incompressible Antigranulocytes Flow
,”
J. Differ. Equations
,
66
(
1
), pp.
19
50
.
23.
Kuipers
,
J.
,
Prins
,
W.
, and
Vanswaaij
,
W. P. M.
,
1992
, “
Numerical-Calculation of Wall-to-Bed Heat-Transfer Coefficients in Gas-Fluidized Beds
,”
AIChE J.
,
38
(
7
), pp.
1079
1091
.
24.
Armstrong
,
L. M.
,
Gu
,
S.
, and
Luo
,
K. H.
,
2010
, “
Study of Wall-to-Bed Heat Transfer in a Bubbling Fluidised Bed Using the Kinetic Theory of Granular Flow
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4949
4959
.
25.
Johnson
,
P. C.
,
Nott
,
P.
, and
Jackson
,
R.
,
1987
, “
Frictional-Collisional Constitutive Relations for Granular Materials, With Application to Plane Shearing
,”
J. Fluid Mech.
,
176
, pp.
67
93
.
26.
Borodulya
,
V. A.
,
Teplitsky
,
Y. S.
,
Markevich
,
I. I.
,
Hassan
,
A. F.
, and
Yeryomenko
,
T. P.
,
1991
, “
Heat-Transfer Between a Surface and a Fluidized-Bed-Consideration of Pressure and Temperature Effects
,”
Int. J. Heat Mass Transfer
,
34
(
1
), pp.
47
53
.
27.
Chen
,
J. C.
,
Grace
,
J. R.
, and
Golriz
,
M. R.
,
2005
, “
Heat Transfer in Fluidized Beds: Design Methods
,”
Powder Technol.
,
150
(
2
), pp.
123
132
.
28.
Patton
,
J. S.
,
Sabersky
,
R. H.
, and
Brennen
,
C. E.
,
1986
, “
Convective Heat Transfer to Rapidly Flowing, Granular Materials
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1263
1269
.
You do not currently have access to this content.