A modified version of the Beddoes–Leishman (B-L) dynamic stall model is presented. A novel approach was applied for deriving the effective flow separation points using two-dimensional (2D) static wind tunnel test data in conjunction with Kirchhoff's model. The results were then fitted in a least-squares sense using a new nonlinear model that gives a better fit for the effective flow separation point under a wide range of operating conditions with fewer curve fitting coefficients. Another model, based on random noise generation, was also integrated within the B-L model to simulate the effects of vortex shedding more realistically. The modified B-L model was validated using 2D experimental data for the S809 and NACA 4415 aerofoils under both steady and unsteady (oscillating) conditions. The model was later embedded in a free-wake vortex model to estimate the unsteady aerodynamic loads on the NREL Phase VI rotor blades consisting of S809 aerofoils when operating under yawed rotor conditions. The results in this study confirm the effectiveness of the proposed modifications to the B-L method under both 2D and three-dimensional (3D) (rotating) conditions.

References

1.
Leishman
,
J. G.
,
2002
, “
Challenges in Modelling the Unsteady Aerodynamics of Wind Turbines
,”
Wind Energy
,
5
, pp.
85
132
.
2.
Holierhoek
,
J. G.
,
de Vaal
,
J. B.
,
van Zuijlen
,
A. H.
, and
Bijl
,
H.
,
2013
, “
Comparing Different Dynamic Stall Models
,”
Wind Energy
,
16
(
1
), pp.
139
158
.
3.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1986
, “
A Generalized Model for Aerofoil Un-Steady Behavior and Dynamic Stall Using the Indicial Method
,”
42nd Annual Forum of the American Helicopter Society
, Washington, DC, June 2–5, pp.
243
266
.
4.
Peters
,
D. A.
,
1985
, “
Toward a Unified Lift Model for Use in Rotor Blade Stability Analysis
,”
J. Am. Helicopter Soc.
,
30
(
3
), pp.
32
42
.
5.
Øye
,
S.
,
1991
, “
Dynamic Stall Simulated as Time Lag of Separation
,” Department of Fluid Mechanics, Technical University of Denmark, Lyngby, Denmark.
6.
Rasmussen
,
F.
,
1995
, “
Engineering Model for Dynamic Stall
,” Risø National Laboratory, Roskilde, Denmark, Report No. Risø-M-854.
7.
Shao
,
S.
,
Zhu
,
Q.
,
Zhang
,
C.
, and
Ni
,
X.
,
2011
, “
Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman–Beddoes Model at Low Mach Number
,”
Chin. J. Aeronaut.
,
24
(
5
), pp.
550
557
.
8.
Sheng
,
W.
,
Galbraith
,
R. A.
, and
Coton
,
F. N.
,
2008
, “
A Modified Dynamic Stall Model for Low Mach Numbers
,”
ASME J. Sol. Energy Eng.
,
130
(
3
), p.
031013
.
9.
Sheng
,
W.
,
Roderick
,
A.
,
Galbraith
,
R. A.
, and
Coton
,
F. N.
,
2010
, “
Applications of Low-Speed Dynamic-Stall Model to the NREL Airfoils
,”
ASME J. Sol. Energy Eng.
,
132
(
1
), p.
011006
.
10.
Gonzalez
,
A.
, and
Munduate
,
X.
,
2007
, “
Unsteady Modelling of the Oscillating S809 Aerofoil and NREL Phase VI Parked Blade Using the Beddoes–Leishman Dynamic Stall Model
,”
J. Phys.: Conf. Ser.
,
75
, p.
012020
.
11.
Hand
,
M. M.
,
Simms
,
D. A.
,
Fingersh
,
L. J.
,
Jager
,
D. W.
,
Cortell
,
J. R.
,
Schreck
,
S.
, and
Larwood
,
S. M.
,
2001
, “
Unsteady Aerodynamics Experiments Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-500-29955.
12.
Schreck
,
S.
, and
Robinson
,
M.
,
2007
, “
Horizontal Axis Wind Turbine Blade Aerodynamics in Experiments and Modeling
,”
IEEE Trans. Energy Convers.
,
22
(
1
), pp.
61
70
.
13.
Schreck
,
S. J.
,
Robinson
,
M. C.
,
Hand
,
M. M.
, and
Simms
,
D. A.
,
2001
, “
Blade Dynamic Stall Vortex Kinematics for a Horizontal Axis Wind Turbine in Yawed Conditions
,”
ASME J. Sol. Energy Eng.
,
123
(
4
), pp.
272
281
.
14.
Xu
,
B. F.
,
Yuan
,
Y.
, and
Wang
,
T. G.
,
2014
, “
Development and Application of a Dynamic Stall Model for Rotating Wind Turbine Blades
,”
J. Phys.: Conf. Ser.
,
524
, p.
012133
.
15.
Reuss Ramsay
,
R.
,
Hoffmann
,
M. J.
, and
Gregorek
,
G. M.
,
1995
, “
Effects of Grit Roughness and Pitch Oscillations on the S809 Airfoil
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-442-7817.
16.
Hoffmann
,
M. J.
,
Reuss Ramsay
,
R.
, and
Gregorek
,
G. M.
,
1996
, “
Effects of Grit Roughness and Pitch Oscillations on the NACA 4415 Airfoil
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/TP-442-7815.
17.
Giguere
,
P.
, and
Selig
,
M. S.
,
1999
, “
Design of a Tapered and Twisted Blade for the NREL Combined Experiment Rotor
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No.
NREL
/SR-500-26173.
18.
Beddoes
,
T. S.
,
1978
, “
Onset of Leading Edge Separation Effects Under Dynamic Conditions and Low Mach Number
,”
34th Annual Forum of the American Helicopter Society
, Washington, DC, May 15–17.
19.
Beddoes
,
T. S.
,
1984
, “
Practical Computation of Unsteady Lift
,”
Vertica
,
8
(
1
), pp.
55
71
.
20.
Beddoes
,
T. S.
,
1981
, “
An Analytic Model for Trailing Edge Stall
,”
Westland Helicopters
, Somerset,
UK, Report No
. 637.
21.
Woods
,
L. C.
,
1961
,
The Theory of Subsonic Plane Flow
,
Cambridge University Press
,
Cambridge, UK
.
22.
Leishman
,
J. G.
, and
Beddoes
,
T. S.
,
1989
, “
A Semi-Empirical Model for Dynamic Stall
,”
J. Am. Helicopter Soc.
,
34
(
3
), pp.
3
17
.
23.
Gupta
,
S.
, and
Leishman
,
J.
,
2006
, “
Dynamic Stall Modelling of the S809 Aerofoil and Comparison With Experiments
,”
Wind Energy
,
9
(
6
), pp.
521
547
.
24.
Tarzanin
,
F. J.
,
1972
, “
Prediction of Control Loads
,”
J. Am. Helicopter Soc.
,
17
(
2
), pp.
33
46
.
25.
Gross
,
D. W.
, and
Harris
,
F. D.
,
1969
, “
Prediction of Inflight Stalled Airloads From Oscillating Airfoil Data
,”
25th Annual Forum of the American Helicopter Society
, Washington, DC, May 14–16.
26.
Savitzky
,
A.
, and
Golay
,
M. J. E.
,
1964
, “
Smoothing and Differentiation of Data by Simplified Least Squares Procedures
,”
Anal. Chem.
,
36
(
8
), pp.
1627
1639
.
27.
Thu
,
A.
,
Jeon
,
S.
,
Byun
,
Y.
, and
Park
,
S.
,
2014
, “
Dynamic Stall Vortex Formation of OA-209 Airfoil at Low Reynolds Number
,” World Academy of Science, Engineering and Technology, International Science Index 86,
Ing. J. Mech. Aerosp. Ind. Mechatr. Manu. Eng.
,
8
(
2
), pp.
267
270
.
28.
Sebastian
,
T.
, and
Lackner
,
M. A.
,
2012
, “
Development of a Free-Wake Vortex Method Code for Offshore Floating Wind Turbines
,”
Renewable Energy
,
46
, pp.
269
275
.
29.
Sebastian
,
T.
,
2012
, “
The Aerodynamic and Near Wake of an Offshore Floating Horizontal Axis Wind Turbine
,” Ph.D. thesis, University of Massachusetts, Amherst, MA.
30.
Farrugia
,
R.
,
Sant
,
T.
, and
Micallef
,
D.
,
2014
, “
Investigating the Aerodynamic Performance of a Model Offshore Floating Wind Turbine
,”
Renewable Energy
,
70
, pp.
24
30
.
You do not currently have access to this content.