Abstract

Falling film evaporation is widely used in solar desalination systems. Fouling is an important problem to be addressed in many applications involving heat transfer including processes involving the utilization of solar energy in desalination applications. In the research upon which this paper partly reports, an experimental investigation was carried out on a vertical tube in falling film evaporation to determine the effects of temperature, velocity, the use of a porous-sintered tube, and the use of Teflon coating on calcium carbonate deposition characteristics. During the fouling experiments, the pressure inside the test tubes was maintained constant at 101.3 kPa, and the inlet temperature was maintained at 373 K, while allowing the water mass velocity to vary from 0.42 to 1.05 kg m−1 s−1. Results show that the fouling in the test tube becomes more serious as the temperature increases and the flowrate decreases. Compared with stainless-steel tubes, porous-sintered tubes can significantly reduce fouling resistance, but at the same time they bring about a decrease in the heat transfer coefficient. The Teflon coating also has anti-fouling performance but does not affect the heat transfer coefficient in stainless-steel tubes. Through the weighing of local fouling deposits, it has been found that the mass of the fouling deposits in the lower part of the tested tubes is greater than that in the upper part.

References

1.
Martín
,
L.
, and
Martín
,
M.
,
2013
, “
Optimal Year-Round Operation of a Concentrated Solar Energy Plant in the South of Europe
,”
Appl. Therm. Eng.
,
59
(
1–2
), pp.
627
633
.
2.
Santamaria
,
F. L.
,
Luceño
,
J. A.
,
Martín
,
M.
, and
Macchietto
,
S.
,
2021
, “
Optimal Operation and Cleaning Scheduling of Air Coolers in Concentrated Solar Plants
,”
Comput. Chem. Eng.
,
150
, p.
107312
.
3.
Wang
,
D.
,
Sun
,
Q.
,
Hokkanen
,
M. J.
,
Zhang
,
C.
,
Lin
,
F.-Y.
,
Liu
,
Q.
,
Zhu
,
S.-P.
, et al
,
2020
, “
Design of Robust Superhydrophobic Surfaces
,”
Nature
,
582
(
7810
), pp.
55
59
.
4.
González
,
D.
,
Amigo
,
J.
, and
Suárez
,
F.
,
2017
, “
Membrane Distillation: Perspectives for Sustainable and Improved Desalination
,”
Renew. Sustain. Energy Rev.
,
80
, pp.
238
259
.
5.
Amin
,
Z. M.
, and
Hawlader
,
M. N. A.
,
2015
, “
Analysis of Solar Desalination System Using Heat Pump
,”
Renew. Energy
,
74
, pp.
116
123
.
6.
Zhang
,
L.
,
Zheng
,
H.
, and
Wu
,
Y.
,
2003
, “
Experimental Study on a Horizontal Tube Falling Film Evaporation and Closed Circulation Solar Desalination System
,”
Renew. Energy
,
28
(
8
), pp.
1187
1199
.
7.
Gang
,
W.
,
Qichang
,
Y.
,
Hongfei
,
Z.
,
Yi
,
Z.
,
Hui
,
F.
, and
Rihui
,
J.
,
2019
, “
Direct Utilization of Solar Linear Fresnel Reflector on Multi-Effect Eccentric Horizontal Tubular Still With Falling Film
,”
Energy
,
170
, pp.
170
184
.
8.
Li
,
W.
,
Wu
,
X.-Y.
,
Luo
,
Z.
, and
Webb
,
R. L.
,
2011
, “
Falling Water Film Evaporation on Newly-Designed Enhanced Tube Bundles
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
2990
2997
.
9.
Zhao
,
X.
, and
Chen
,
X. D.
,
2013
, “
A Critical Review of Basic Crystallography to Salt Crystallization Fouling in Heat Exchangers
,”
Heat Transfer Eng.
,
34
(
8–9
), pp.
719
732
.
10.
Li
,
W.
, and
Li
,
G.
,
2010
, “
Modeling Cooling Tower Fouling in Helical-Rib Tubes Based on Von-Karman Analogy
,”
Int. J. Heat Mass Transfer
,
53
(
13
), pp.
2715
2721
.
11.
Maddahi
,
M. H.
,
Hatamipour
,
M. S.
, and
Jamialahmadi
,
M.
,
2018
, “
Experimental Study of Calcium Sulfate Fouling in a Heat Exchanger During Liquid–Solid Fluidized Bed With Cylindrical Particles
,”
Int. J. Therm. Sci.
,
125
, pp.
11
22
.
12.
Kern
,
D. Q.
, and
Seaton
,
R. E.
,
1959
, “
A Theoretical Analysis of Thermal Surface Fouling
,”
Br. Chem. Eng.
,
4
(
5
), pp.
258
262
.
13.
Fu
,
L.
,
Liu
,
P.
, and
Li
,
G.
,
2017
, “
Numerical Investigation on Ash Fouling Characteristics of Flue Gas Heat Exchanger
,”
Appl. Therm. Eng.
,
123
, pp.
891
900
.
14.
Webb
,
R. L.
, and
Li
,
W.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part I: Long-Term Fouling Data
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3567
3578
.
15.
Li
,
W.
, and
Webb
,
R. L.
,
2000
, “
Fouling in Enhanced Tubes Using Cooling Tower Water: Part II: Combined Particulate and Precipitation Fouling
,”
Int. J. Heat Mass Transfer
,
43
(
19
), pp.
3579
3588
.
16.
Quan
,
Z.
,
Chen
,
Y.
, and
Ma
,
C.
,
2008
, “
Experimental Study of Fouling on Heat Transfer Surface During Forced Convective Heat Transfer
,”
Chin. J. Chem. Eng.
,
16
(
4
), pp.
535
540
.
17.
Li
,
W.
,
2020
, “
Oscillatory Fouling in Condensers in Cooling Tower Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
2
), p.
021010
.
18.
Al-Janabi
,
A.
,
Malayeri
,
M. R.
, and
Muller-Steinhagen
,
H.
,
2011
, “
Minimization of CaSO4 Deposition Through Surface Modification
,”
Heat Transfer Eng.
,
32
(
3–4
), pp.
291
299
.
19.
Li
,
W.
,
Zhou
,
K.
,
Manglik
,
R. M.
,
Li
,
G.-Q.
, and
Bergles
,
A. E.
,
2016
, “
Investigation of CaCO3 Fouling in Plate Heat Exchangers
,”
Heat Mass Transfer
,
52
(
11
), pp.
2401
2414
.
20.
Chen
,
X.
,
Yang
,
Q.
,
Wu
,
R.
,
Zhang
,
N.
, and
Li
,
N.
,
2018
, “
Experimental Study of the Growth Characteristics of Microbial Fouling on Sewage Heat Exchanger Surface
,”
Appl. Therm. Eng.
,
128
, pp.
426
433
.
21.
Díaz-Ovalle
,
C. O.
,
González-Alatorre
,
G.
, and
Alvarado
,
J. F. J.
,
2017
, “
Analysis of the Dynamic Response of Falling-Film Evaporators Considering Fouling
,”
Food Bioprod. Process.
,
104
, pp.
124
136
.
22.
Paz
,
C.
,
Suárez
,
E.
,
Concheiro
,
M.
, and
Porteiro
,
J.
,
2013
, “
Experimental Study of Soot Particle Fouling on Ribbed Plates: Applicability of the Critical Local Wall Shear Stress Criterion
,”
Exp. Therm. Fluid. Sci.
,
44
, pp.
364
373
.
23.
Blanpain-Avet
,
P.
,
André
,
C.
,
Khaldi
,
M.
,
Bouvier
,
L.
,
Petit
,
J.
,
Six
,
T.
,
Jeantet
,
R.
,
Croguennec
,
T.
, and
Delaplace
,
G.
,
2016
, “
Predicting the Distribution of Whey Protein Fouling in a Plate Heat Exchanger Using the Kinetic Parameters of the Thermal Denaturation Reaction of β-Lactoglobulin and the Bulk Temperature Profiles
,”
J. Dairy Sci.
,
99
(
12
), pp.
9611
9630
.
24.
Gu
,
Y.
,
Bouvier
,
L.
,
Tonda
,
A.
, and
Delaplace
,
G.
,
2019
, “
A Mathematical Model for the Prediction of the Whey Protein Fouling Mass in a Pilot Scale Plate Heat Exchanger
,”
Food Control
,
106
, p.
106729
.
25.
Jackowski
,
L.
,
Risse
,
P.
, and
Smith
,
R.
,
2017
, “
Impact of Nonuniform Fouling on Operating Temperatures in Heat Exchanger Networks
,”
Heat Transfer Eng.
,
38
(
7–8
), pp.
753
761
.
26.
Awais
,
M.
, and
Bhuiyan
,
A. A.
,
2019
, “
Recent Advancements in Impedance of Fouling Resistance and Particulate Depositions in Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
141
, pp.
580
603
.
27.
Li
,
W.
, and
Webb
,
R. L.
,
2002
, “
Fouling Characteristics of Internal Helical-Rib Roughness Tubes Using Low-Velocity Cooling Tower Water
,”
Int. J. Heat Mass Transfer
,
45
(
8
), pp.
1685
1691
.
28.
Zhao
,
L.
,
Tang
,
W.
,
Wang
,
L.
,
Li
,
W.
, and
Minkowycz
,
W. J.
,
2019
, “
Heat Transfer and Fouling Characteristics During Falling Film Evaporation in a Vertical Sintered Tube
,”
Int. Commun. Heat Mass Transfer
,
109
, p.
104388
.
29.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
Dewitt
,
D. P.
,
2011
,
Introduction to Heat Transfer
, 6th ed.,
John Wiley & Sons, Inc
,
New York
.
30.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
, eds.,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1,”
Standard Reference Data Program
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
31.
Wu
,
Z.
,
Sunden
,
B.
,
Wang
,
L.
, and
Li
,
W.
,
2014
, “
Convective Condensation Inside Horizontal Smooth and Microfin Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
5
), p.
051504
.
You do not currently have access to this content.