Graphical Abstract Figure

Energy, Economic, and Environmental Viability of Linear Fresnel Reflector Solar Power Plants in Algeria

Graphical Abstract Figure

Energy, Economic, and Environmental Viability of Linear Fresnel Reflector Solar Power Plants in Algeria

Close modal

Abstract

The Algerian government seeks to provide all the resources available to it to exploit every available energy source in all Algerian provinces. Accordingly, this paper aims to present an energy, economic, and environmental study of linear Fresnel reflector solar power plants using the system advisor model in four strategic Algerian regions (Ain Aménas, Gassi-Touil, Hassi R’mel, and El-Oued). The studied solar power plants can produce between 318.75 GWe and 379.29 GWe annually at a levelized cost of electricity ranging between 0.093 $/kWh and 0.11 $/kWh. In addition, the annual avoided CO2 emissions are between 143.41 kt and 170.87 kt, equivalent to 0.473 kg CO2/1 kWh of electricity, meaning that environmental tax savings will range between 2.08 and 2.48 million dollars annually. The results obtained are very encouraging for decision-makers and investors, as the net capital investment (between 642.67 and 642.82 million dollars) can be recovered in less than 10.2 years, with the power plant capable of operating for 25 consecutive years.

References

1.
Molla
,
S.
,
Farrok
,
O.
, and
Alam
,
M. J.
,
2024
, “
Electrical Energy and the Environment: Prospects and Upcoming Challenges of the World's Top Leading Countries
,”
Renewable Sustainable Energy Rev.
,
191
, p.
114177
.
2.
Elavarasan
,
R. M.
,
2020
, “
Comprehensive Review on India's Growth in Renewable Energy Technologies in Comparison With Other Prominent Renewable Energy Based Countries
,”
ASME J. Sol. Energy Eng.
,
142
(
3
), p.
030801
.
3.
Khechekhouche
,
A.
,
Smakdji
,
N.
,
El Haj Assad
,
M.
,
Kabeel
,
A. E.
,
Abdelgaied
,
M.
,
Ghodbane
,
M.
,
Allal
,
A.
, and
Sathyamurthy
,
R.
,
2023
, “
Impact of Solar Energy and Energy Storage on a Still's Nocturnal Output
,”
J. Test. Eval.
,
51
(
6
), p.
20220701
.
4.
Kushwaha
,
P. K.
,
Ray
,
P.
, and
Bhattacharjee
,
C.
,
2023
, “
Optimal Sizing of a Hybrid Renewable Energy System: A Socio-Techno-Economic-Environmental Perspective
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031003
.
5.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Hussein
,
A. K.
,
Ali
,
H. M.
, and
Li
,
D.
,
2021
, “
Thermal Numerical Investigation of a Small Parabolic Trough Collector Under Desert Climatic Conditions
,”
J. Therm. Eng.
,
7
(
3
), pp.
429
446
.
6.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Hussein
,
A. K.
,
Li
,
D.
, and
Sivasankaran
,
S.
,
2021
, “
Optical Numerical Investigation of a Solar Power Plant of Parabolic Trough Collectors
,”
J. Therm. Eng.
,
7
(
3
), pp.
550
569
.
7.
Smaili
,
K.
,
Kasbadji Merzouk
,
N.
,
Merzouk
,
M.
, and
Boukenoui
,
R.
,
2023
, “
Estimation of the Daily Utilizability of a Flat Plate Solar Collector for Different Climatic Zones in Algeria
,”
ASME J. Sol. Energy Eng.
,
145
(
3
), p.
031006
.
8.
Barbón
,
A.
,
Ghodbane
,
M.
,
Bayón
,
L.
, and
Said
,
Z.
,
2022
, “
A General Algorithm for the Optimization of Photovoltaic Modules Layout on Irregular Rooftop Shapes
,”
J. Cleaner Prod.
,
365
, p.
132774
.
9.
Bisset
,
D. K.
,
2023
, “
Optimization of Piecewise-Focusing Concentrating Solar Thermal Collectors Using the System Advisor Model, and Comparison to a Central Receiver System
,”
ASME J. Sol. Energy Eng.
,
145
(
5
), p.
054501
.
10.
Ghodbane
,
M.
,
Said
,
Z.
,
Ketfi
,
O.
,
Boumeddane
,
B.
,
Hoang
,
A. T.
,
Sheikholeslami
,
M.
,
Assad
,
M. E. H.
, et al
,
2022
, “
Thermal Performance Assessment of an Ejector Air-Conditioning System With Parabolic Trough Collector Using R718 as a Refrigerant: A Case Study in Algerian Desert Region
,”
Sustainable Energy Technol. Assess.
,
53
(
Part B
), p.
102513
.
11.
Ghodbane
,
M.
,
Majdak
,
M.
, and
Boumeddane
,
B.
,
2021
, “
The Efficiency of Linear Fresnel Reflectors in Producing Superheated Steam for Power Plant Drive
,”
E3S Web Conf.
,
323
, p.
00011
.
12.
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Said
,
Z.
, and
Bellos
,
E.
,
2019
, “
A Numerical Simulation of a Linear Fresnel Solar Reflector Directed to Produce Steam for the Power Plant
,”
J. Cleaner Prod.
,
231
, pp.
494
508
.
13.
Ghodbane
,
M.
,
Bellos
,
E.
,
Said
,
Z.
,
Boumeddane
,
B.
,
Khechekhouche
,
A.
,
Sheikholeslami
,
M.
, and
Ali
,
Z. M.
,
2021
, “
Energy, Financial and Environmental Investigation of a Direct Steam Production Power Plant Driven by Linear Fresnel Solar Reflectors
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021008
.
14.
Ghodbane
,
M.
,
Benmenine
,
D.
,
Khechekhouche
,
A.
, and
Boumeddane
,
B.
,
2020
, “
Brief on Solar Concentrators: Differences and Applications
,”
Instrum. Mesure Metrologie
,
19
(
5
), pp.
371
378
.
15.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
16.
Sorbet
,
F. J.
,
Fernandez-Peruchena
,
C.
,
Zaversky
,
F.
,
Chakroun
,
W.
,
Alotaibi
,
S. A.
,
Ahmed
,
M.
,
Sanchez
,
M.
, and
García-Barberena
,
J.
,
2022
, “
Performance Assessment of Seawater, Wet and Dry Cooling in a 50-MW Parabolic Trough Collectors Concentrated Solar Power Plant in Kuwait
,”
ASME J. Sol. Energy Eng.
,
144
(
4
), p.
041007
.
17.
Krishna
,
Y.
,
Faizal
,
M.
,
Saidur
,
R.
,
Ng
,
K. C.
, and
Aslfattahi
,
N.
,
2020
, “
State-of-the-Art Heat Transfer Fluids for Parabolic Trough Collector
,”
Int. J. Heat Mass Transfer
,
152
, p.
119541
.
18.
Bellos
,
E.
,
2019
, “
Progress in the Design and the Applications of Linear Fresnel Reflectors—A Critical Review
,”
Therm. Sci. Eng. Prog.
,
10
, pp.
112
137
.
19.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Development of Analytical Expressions for the Incident Angle Modifiers of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
769
779
.
20.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Moghimi
,
M. A.
,
2019
, “
Reducing the Optical End Losses of a Linear Fresnel Reflector Using Novel Techniques
,”
Sol. Energy
,
186
, pp.
247
256
.
21.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Secondary Concentrator Optimization of a Linear Fresnel Reflector Using Bezier Polynomial Parametrization
,”
Sol. Energy
,
171
, pp.
716
727
.
22.
Bellos
,
E.
,
Mathioulakis
,
E.
,
Papanicolaou
,
E.
, and
Belessiotis
,
V.
,
2018
, “
Experimental Investigation of the Daily Performance of an Integrated Linear Fresnel Reflector System
,”
Sol. Energy
,
167
, pp.
220
230
.
23.
Bellos
,
E.
,
Mathioulakis
,
E.
,
Tzivanidis
,
C.
,
Belessiotis
,
V.
, and
Antonopoulos
,
K. A.
,
2016
, “
Experimental and Numerical Investigation of a Linear Fresnel Solar Collector With Flat Plate Receiver
,”
Energy Convers. Manage.
,
130
, pp.
44
59
.
24.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Assessment of Linear Solar Concentrating Technologies for Greek Climate
,”
Energy Convers. Manage.
,
171
, pp.
1502
1513
.
25.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2020
, “
Solar Concentrating Systems and Applications in Greece—A Critical Review
,”
J. Cleaner Prod.
,
272
, p.
122855
.
26.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Daily, Monthly and Yearly Performance of a Linear Fresnel Reflector
,”
Sol. Energy
,
173
, pp.
517
529
.
27.
Bellos
,
E.
,
Skaltsas
,
I.
,
Pliakos
,
O.
, and
Tzivanidis
,
C.
,
2019
, “
Energy and Financial Investigation of a Cogeneration System Based on Linear Fresnel Reflectors
,”
Energy Convers. Manage.
,
198
, p.
111821
.
28.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2018
, “
Optical and Thermal Analysis of a Linear Fresnel Reflector Operating With Thermal Oil, Molten Salt and Liquid Sodium
,”
Appl. Therm. Eng.
,
133
, pp.
70
80
.
29.
Ghodbane
,
M.
,
Bellos
,
E.
,
Said
,
Z.
,
Boumeddane
,
B.
,
Hussein
,
A. K.
, and
Kolsi
,
L.
,
2021
, “
Evaluating Energy Efficiency and Economic Effect of Heat Transfer in Copper Tube for Small Solar Linear Fresnel Reflector
,”
J. Therm. Anal. Calorim.
,
143
(
6
), pp.
4197
4215
.
30.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Said
,
N.
,
2016
, “
A Linear Fresnel Reflector as a Solar System for Heating Water: Theoretical and Experimental Study
,”
Case Stud. Therm. Eng.
,
8
(
C
), pp.
176
186
.
31.
Said
,
Z.
,
Ghodbane
,
M.
,
Hachicha
,
A. A.
, and
Boumeddane
,
B.
,
2019
, “
Optical Performance Assessment of a Small Experimental Prototype of Linear Fresnel Reflector
,”
Case Stud. Therm. Eng.
,
16
, p.
100541
.
32.
Said
,
Z.
,
Ghodbane
,
M.
,
Tiwari
,
A. K.
,
Ali
,
H. M.
,
Boumeddane
,
B.
, and
Ali
,
Z. M.
,
2021
, “
4E (Energy, Exergy, Economic, and Environment) Examination of a Small LFR Solar Water Heater: An Experimental and Numerical Study
,”
Case Stud. Therm. Eng.
,
27
, p.
101277
.
33.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Hussein
,
A. K.
,
2021
, “
Performance Analysis of a Solar-Driven Ejector Air Conditioning System Under El-Oued Climatic Conditions, Algeria
,”
J. Therm. Eng.
,
7
(
1
), pp.
172
189
.
34.
Ghodbane
,
M.
,
Boumeddane
,
B.
, and
Lahrech
,
K.
,
2021
, “
Solar Thermal Energy to Drive Ejector HVAC Systems: A Numerical Study Under Blida Climatic Conditions
,”
Case Stud. Therm. Eng.
,
28
, p.
101558
.
35.
Barbón
,
A.
,
Bayón
,
L.
,
Bayón-Cueli
,
C.
, and
Barbón
,
N.
,
2019
, “
A Study of the Effect of the Longitudinal Movement on the Performance of Small Scale Linear Fresnel Reflectors
,”
Renewable Energy
,
138
, pp.
128
138
.
36.
Barbón
,
A.
,
Bayón-Cueli
,
C.
,
Bayón
,
L.
, and
Ayuso
,
P. F.
,
2020
, “
Influence of Solar Tracking Error on the Performance of a Small-Scale Linear Fresnel Reflector
,”
Renewable Energy
,
162
, pp.
43
54
.
37.
Barbón
,
A.
,
Fernández-Rubiera
,
J. A.
,
Martínez-Valledor
,
L.
,
Pérez-Fernández
,
A.
, and
Bayón
,
L.
,
2021
, “
Design and Construction of a Solar Tracking System for Small-Scale Linear Fresnel Reflector With Three Movements
,”
Appl. Energy
,
285
, p.
116477
.
38.
Barbón
,
A.
,
Bayón-Cueli
,
C.
,
Bayón
,
L.
, and
Rodríguez
,
L.
,
2019
, “
Investigating the Influence of Longitudinal Tilt Angles on the Performance of Small Scale Linear Fresnel Reflectors for Urban Applications
,”
Renewable Energy
,
143
, pp.
1581
1593
.
39.
Barbón
,
A.
,
López-Smeetz
,
C.
,
Bayón
,
L.
, and
Pardellas
,
A.
,
2020
, “
Wind Effects on Heat Loss From a Receiver With Longitudinal Tilt Angle of Small-Scale Linear Fresnel Reflectors for Urban Applications
,”
Renewable Energy
,
162
, pp.
2166
2181
.
40.
Barbón
,
A.
,
Vesperinas
,
D.
,
Bayon
,
L.
,
García-Mollaghan
,
D.
, and
Ghodbane
,
M.
,
2023
, “
Numerical Simulation of a Solar Water Disinfection System Based on a Small-Scale Linear Fresnel Reflector
,”
RSC Adv.
,
13
(
1
), pp.
155
171
.
41.
Montes
,
M. J.
,
Abbas
,
R.
,
Barbero
,
R.
, and
Rovira
,
A.
,
2022
, “
A New Design of Multi-tube Receiver for Fresnel Technology to Increase the Thermal Performance
,”
Appl. Therm. Eng.
,
204
, p.
117970
.
42.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Papadopoulos
,
A.
,
2019
, “
Enhancing the Performance of a Linear Fresnel Reflector Using Nanofluids and Internal Finned Absorber
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
237
255
.
43.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2018
, “
Multi-criteria Evaluation of a Nanofluid-Based Linear Fresnel Solar Collector
,”
Sol. Energy
,
163
, pp.
200
214
.
44.
Ghodbane
,
M.
,
Said
,
Z.
,
Hachicha
,
A. A.
, and
Boumeddane
,
B.
,
2020
, “
Performance Assessment of Linear Fresnel Solar Reflector Using MWCNTs/DW Nanofluids
,”
Renewable Energy
,
151
, pp.
43
56
.
45.
Said
,
Z.
,
Ghodbane
,
M.
,
Sundar
,
L. S.
,
Tiwari
,
A. K.
,
Sheikholeslami
,
M.
, and
Boumeddane
,
B.
,
2021
, “
Heat Transfer, Entropy Generation, Economic and Environmental Analyses of Linear Fresnel Reflector Using Novel rGO-Co3O4 Hybrid Nanofluids
,”
Renewable Energy
,
165
(
Part 1
), pp.
420
437
.
46.
Ghodbane
,
M.
,
Said
,
Z.
,
Tiwari
,
A. K.
,
Syam Sundar
,
L.
,
Li
,
C.
, and
Boumeddane
,
B.
,
2022
, “
4E (Energy, Exergy, Economic and Environmental) Investigation of LFR Using MXene Based Silicone Oil Nanofluids
,”
Sustainable Energy Technol. Assess.
,
49
, p.
101715
.
47.
Hussein
,
A. K.
,
Ghodbane
,
M.
,
Said
,
Z.
, and
Ward
,
R. S.
,
2022
, “
The Effect of the Baffle Length on the Natural Convection in an Enclosure Filled With Different Nanofluids
,”
J. Therm. Anal. Calorim.
,
147
(
1
), pp.
791
813
.
48.
Said
,
Z.
,
Sharma
,
P.
,
Aslfattahi
,
N.
, and
Ghodbane
,
M.
,
2022
, “
Experimental Analysis of Novel Ionic Liquid-MXene Hybrid Nanofluid's Energy Storage Properties: Model-Prediction Using Modern Ensemble Machine Learning Methods
,”
J. Energy Storage
,
52
, p.
104858
.
49.
Salem
,
H.
,
Mina
,
E.
,
Abdelmessih
,
R.
, and
Mekhail
,
T.
,
2022
, “
Numerical Investigation for Performance Enhancement of Photovoltaic Cell by Nanofluid Cooling
,”
ASME J. Sol. Energy Eng.
,
144
(
2
), p.
021012
.
50.
Largot
,
S.
,
Bessous
,
N.
,
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Hussain
,
F.
,
Shafi
,
M.
,
Zhang
,
B.
,
Al-Fatlawi
,
A.-W.
, and
Borni
,
A.
,
2024
, “
Experimental Study on the Effect of Operational and Environmental Conditions on Photovoltaic Modules Productivity in El-Oued Region, Algeria
,”
Energy Convers. Manage.: X
,
23
, p.
100655
.
51.
Ghodbane
,
M.
,
El-Amarty
,
N.
,
Boumeddane
,
B.
,
Hussain
,
F.
,
El Fadili
,
H.
,
Bennani
,
S. D.
, and
Akil
,
M.
,
2025
, “
Improving Short-Term Photovoltaic Power Forecasting With an Evolving Neural Network Incorporating Time-Varying Filtering Based on Empirical Mode Decomposition
,”
Energy Convers. Manage.
,
323
, p.
119261
.
52.
Said
,
Z.
,
Ghodbane
,
M.
,
Boumeddane
,
B.
,
Tiwari
,
A. K.
,
Sundar
,
L. S.
,
Li
,
C.
,
Aslfattahi
,
N.
, and
Bellos
,
E.
,
2022
, “
Energy, Exergy, Economic and Environmental (4E) Analysis of a Parabolic Trough Solar Collector Using MXene Based Silicone Oil Nanofluids
,”
Sol. Energy Mater. Sol. Cells
,
239
, p.
111633
.
53.
Sellal
,
A.
,
2017
, “
Décret Exécutif n° 17-98 du 29 Joumada El Oula 1438 Correspondant au 26 Février 2017 Définissant la Procédure D’appel D’offres Pour la Production des énergies Renouvelables ou de Cogénération et Leur Intégration Dans le Système National D’approvisionnement en énergie électrique
,”
Journal Officiel De La Republique Algerienne N°
,
15
, pp.
3
8
.
54.
Global-Petrol-Prices
,
2024
, “Electricity Prices Per kWh,” https://www.globalpetrolprices.com/Algeria/
55.
IRENA
,
2023
,
Renewable Power Generation Costs in 2022
,
International Renewable Energy Agency
,
Abu Dhabi
. https://www.irena.org/Publications/2023/Aug/Renewable-Power-Generation-Costs-in-2022
You do not currently have access to this content.