Graphical Abstract Figure

Flowchart of the research carried out

Graphical Abstract Figure

Flowchart of the research carried out

Close modal

Abstract

Hybrid solar simulators (SS) using halogen lamps and light-emitting diodes (LEDs), classified as A for spectral match (SM) and temporal instability (TI), are primarily reported for characterizing small solar cells (160cm2). However, spatial nonuniformity (SNU) reports are rare. This article presents the characterization of a large-area hybrid SS capable of simulating sunlight intensity and spectrum using a combination of ten white LEDs, six halogen lamps, and 12 power LEDs being three blue (450nm), three magenta (750nm), and three infrared (850nm). This setup ensures homogeneous light distribution over a 600cm2 surface. The proposed SS was characterized according to the International Electrotechnical Commission (IEC 60904-9) standard, analyzing SM, SNU, and TI. The obtained values (SM = 1.29, SNU = 1.5%, and TI = 0.17%) classify the simulator as BAA. Electrical characterization of a 5W solar panel (300cm2) was performed via current–voltage (IV) and power–voltage (PV) curves under indoor and outdoor conditions. A relative error of less than 4% was found compared to outdoor measurements, making it suitable for photovoltaic device testing. The results demonstrate the feasibility of developing a low-cost SS using incandescent and semiconductor light sources, with the potential for characterizing commercial photovoltaic devices.

References

1.
Emery
,
K.
,
1986
, “
Solar Simulators and IV Measurement Methods
,”
Solar Cells
,
18
(
3–4
), pp.
251
260
.
2.
ASTM
,
2019
, “Standard Classification for Solar Simulators for Electrical Performance Testing of Photovoltaic Devices,” Technical Report No. E927-19, ASTM International.
3.
IEC
,
2007
, “Photovoltaic Devices—Part 9: Solar Simulator Performance Requirements,” Technical Report No. 60904-9, International Electrotechnical Commission.
4.
International Electrotechnical Commission
,
2020
, “Photovoltaic Devices—Part 9: Solar Simulator Performance Requirements,” Technical Report IEC 60904-9, International Electrotechnical Commission.
5.
Watjanatepin
,
N.
,
Boonmee
,
C.
,
Kaisookkanatorn
,
P.
,
Sritanauthaikorn
,
P.
,
Wannakam
,
K.
, and
Thongkullaphat
,
S.
,
2023
, “
Light Sources and Irradiance Spectrum of Led Solar Simulator for Photovoltaic Devices: A Review
,”
Int. J. Renew. Energy Res.
,
13
(
1
), pp.
192
207
.
6.
Dong
,
X.
,
Sun
,
Z.
,
Nathan
,
G. J.
,
Ashman
,
P. J.
, and
Gu
,
D.
,
2015
, “
Time-Resolved Spectra of Solar Simulators Employing Metal Halide and Xenon Arc Lamps
,”
Sol. Energy
,
115
, pp.
613
620
.
7.
Zhang
,
Y.
,
Shaw
,
M.
,
Ekman
,
B.
,
Brooks
,
G.
,
Rhamdhani
,
M. A.
, and
Guo
,
C.
,
2024
, “
Characterization and Deviation Analysis of a High-Flux Solar Simulator With Metal-Halide Lamps
,”
ASME J. Sol. Energy Eng.
,
146
(
2
), p.
021002
.
8.
Esen
,
V.
,
Sağlam
,
Ş.
, and
Oral
,
B.
,
2017
, “
Light Sources of Solar Simulators for Photovoltaic Devices: A Review
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
1240
1250
.
9.
Wang
,
W.
, and
Laumert
,
B.
,
2014
, “Simulate a ‘Sun’ for Solar Research: A Literature Review of Solar Simulator Technology,” KTH Royal Institute of Technology.
10.
Gallo
,
A.
,
Marzo
,
A.
,
Fuentealba
,
E.
, and
Alonso
,
E.
,
2017
, “
High Flux Solar Simulators for Concentrated Solar Thermal Research: A Review
,”
Renew. Sustain. Energy Rev.
,
77
, pp.
1385
1402
.
11.
Bader
,
R.
,
Levêque
,
G.
,
Haussener
,
S.
, and
Lipiński
,
W.
,
2016
, “High-Flux Solar Simulator Technology,”
Optics for Solar Energy
,
Optica Publishing Group
,
Leipzig, Germany
, pp.
1
3
.
12.
Li
,
X.
,
Chen
,
J.
,
Lipiński
,
W.
,
Dai
,
Y.
, and
Wang
,
C.-H.
,
2020
, “
A 28 Kwe Multi-source High-Flux Solar Simulator: Design, Characterization, and Modeling
,”
Sol. Energy
,
211
, pp.
569
583
.
13.
Krueger
,
K. R.
,
Lipiński
,
W.
, and
Davidson
,
J. H.
,
2013
, “
Operational Performance of the University of Minnesota 45 Kwe High-Flux Solar Simulator
,” Proceedings of the ASME 2012 International Conference on Energy Sustainability,
ASME
, pp.
1093
1099
.
14.
Wang
,
W.
,
Aichmayer
,
L.
,
Garrido
,
J.
, and
Laumert
,
B.
,
2017
, “
Development of a Fresnel Lens Based High-Flux Solar Simulator
,”
Sol. Energy
,
144
, pp.
436
444
.
15.
Zhu
,
Q.
,
Xuan
,
Y.
,
Liu
,
X.
,
Yang
,
L.
,
Lian
,
W.
, and
Zhang
,
J.
,
2020
, “
A 130 kwe Solar Simulator With Tunable Ultra-high Flux and Characterization Using Direct Multiple Lamps Mapping
,”
Appl. Energy
,
270
, pp.
115
165
.
16.
Enaganti
,
P. K.
,
Dwivedi
,
P. K.
,
Srivastava
,
A. K.
, and
Goel
,
S.
,
2020
, “
Analysis of Submerged Amorphous, Mono- and Poly-crystalline Silicon Solar Cells Using Halogen Lamp and Comparison With Xenon Solar Simulator
,”
Sol. Energy
,
211
, pp.
744
752
.
17.
Arifin
,
Z.
,
Kuncoro
,
I. W.
, and
Hijriawan
,
M.
,
2021
, “
Solar Simulator Development for 50 wp Solar Photovoltaic Experimental Design Using Halogen Lamp
,”
Int. J. Heat Technol.
,
39
(
6
), pp.
1741
1747
.
18.
Soetedjo
,
A.
,
Nakhoda
,
Y. I.
,
Lomi
,
A.
, and
Suryanto
,
T. A.
,
2016
, “
Solar Simulator Using Halogen Lamp for PV Research
,” Proceedings of Second International Conference on Electrical Systems, Technology and Information 2015 (ICESTI 2015),
Springer
, pp.
239
245
.
19.
Aksoy
,
F.
,
Karabulut
,
H.
,
Çınar
,
C.
,
Solmaz
,
H.
,
Özgören
,
Y. Ö.
, and
Uyumaz
,
A.
,
2015
, “
Thermal Performance of a Stirling Engine Powered by a Solar Simulator
,”
Appl. Therm. Eng.
,
86
, pp.
161
167
.
20.
Petrasch
,
J.
,
Coray
,
P.
,
Meier
,
A.
,
Brack
,
M.
,
Haeberling
,
P.
,
Wuillemin
,
D.
, and
Steinfeld
,
A.
,
2007
, “
A Novel 50 kw 11,000 Suns High-Flux Solar Simulator Based on an Array of Xenon Arc Lamps
,”
ASME J. Sol. Energy Eng.
,
129
(
4
), pp.
405
411
.
21.
Leary
,
G.
,
Switzer
,
G.
,
Kuntz
,
G.
, and
Kaiser
,
T.
,
2016
, “
Comparison of Xenon Lamp-Based and LED-Based Solar Simulators
,” 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC),
IEEE
, pp.
3062
3067
.
22.
Kim
,
K. A.
,
Dostart
,
N.
,
Huynh
,
J.
, and
Krein
,
P. T.
,
2014
, “
Low-Cost Solar Simulator Design for Multi-junction Solar Cells in Space Applications
,” Power and Energy Conference at Illinois (PECI),
IEEE
, pp.
1
6
.
23.
Krusi
,
P.
, and
Schmid
,
R.
,
1983
, “
The CSI 1000 W Lamp as a Source for Solar Radiation Simulation
,”
Sol. Energy
,
30
(
5
), pp.
455
462
.
24.
Tawfik
,
M.
,
Tonnellier
,
X.
, and
Sansom
,
C.
,
2018
, “
Light Source Selection for a Solar Simulator for Thermal Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
90
, pp.
802
813
.
25.
Lopez-Fraguas
,
E.
,
Sánchez-Pena
,
J. M.
, and
Vergaz
,
R.
,
2019
, “
A Low-Cost LED-Based Solar Simulator
,”
IEEE Trans. Instrum. Meas.
,
68
(
12
), pp.
4913
4923
.
26.
Chojniak
,
D.
,
Bett
,
A. J.
,
Hohl-Ebinger
,
J.
,
Reichmuth
,
S. K.
,
Schachtner
,
M.
, and
Siefer
,
G.
,
2023
, “
LED Solar Simulators—A Spectral Adjustment Procedure for Tandem Solar Cells
,”
AIP Conf. Proc.
,
2826
(
1
), pp.
1
8
.
27.
Stuckelberger
,
M.
,
Perruche
,
B.
,
Bonnet-Eymard
,
M.
,
Riesen
,
Y.
,
Despeisse
,
M.
,
Haug
,
F.-J.
, and
Ballif
,
C.
,
2014
, “
Class AAA LED-Based Solar Simulator for Steady-State Measurements and Light Soaking
,”
IEEE J. Photovoltaics
,
4
(
5
), pp.
1282
1287
.
28.
Linden
,
K. J.
,
Neal
,
W. R.
, and
Serreze
,
H. B.
,
2014
, “Adjustable Spectrum LED Solar Simulator,”
Light-Emitting Diodes: Materials, Devices, and Applications for Solid State Lighting XVIII
, Vol. 9003,
SPIE
, pp.
109
117
.
29.
Al-Ahmad
,
A. Y.
,
Holdsworth
,
J.
,
Vaughan
,
B.
,
Sharafutdinova
,
G.
,
Zhou
,
X.
,
Belcher
,
W. J.
, and
Dastoor
,
P. C.
,
2019
, “
Modular LED Arrays for Large Area Solar Simulation
,”
Prog. Photovoltaics: Res. Appl.
,
27
(
2
), pp.
179
189
.
30.
Watjanatepin
,
N.
, and
Sritanauthaikorn
,
P.
,
2022
, “
Rectangular Module for Large Scale Solar Simulator Based on High-Powered LEDs Array
,”
TELKOMNIKA (Telecommun. Comput. Electron. Control)
,
20
(
2
), pp.
462
474
.
31.
Al Sultani
,
K.
,
Al Shuaili
,
A.
,
Al Adawi
,
A.
,
Husain
,
A.
,
Ansari
,
M. Z.
, and
Zunaid
,
M.
,
2024
, “
Optimization of Lamps Configuration for a Large-Scale Indoor Solar Simulator for PV Panels and Solar Collectors
,”
J. Adv. Res. Appl. Mech.
,
123
(
1
), pp.
195
205
.
32.
Rosli
,
M. A. M.
,
Hamizan
,
M. A. D.
,
Nawam
,
M. Z.
,
Hussain
,
F.
, and
Herawan
,
S. G.
,
2022
, “
Measurement of Spectral Match and Spatial Non-uniformity for Indoor Solar Simulator
,”
J. Adv. Res. Fluid Mech. Therm. Sci.
,
100
(
1
), pp.
98
115
.
33.
Namin
,
A.
,
Jivacate
,
C.
,
Chenvidhya
,
D.
,
Kirtikara
,
K.
, and
Thongpron
,
J.
,
2012
, “
Construction of Tungsten Halogen, Pulsed LED, and Combined Tungsten Halogen-LED Solar Simulators for Solar Cell-Characterization and Electrical Parameters Determination
,”
Int. J. Photoenergy
,
2012
(
1
), p.
527820
.
34.
Grandi
,
G.
,
Ienina
,
A.
, and
Bardhi
,
M.
,
2014
, “
Effective Low-Cost Hybrid LED-Halogen Solar Simulator
,”
IEEE Trans. Ind. Appl.
,
50
(
5
), pp.
3055
3064
.
35.
Baguckis
,
A.
,
Novičkovas
,
A.
,
Mekys
,
A.
, and
Tamošiūnas
,
V.
,
2016
, “
Compact Hybrid Solar Simulator With the Spectral Match Beyond Class A
,”
J. Photonics Energy Soc. Photo-Opt. Instrum. Eng.
,
6
(
3
), p.
035501
.
36.
Bodnár
,
I.
,
Koós
,
D.
,
Iski
,
P.
, and
Skribanek
,
Á.
,
2020
, “
Design and Construction of a Sun Simulator for Laboratory Testing of Solar Cells
,”
Acta Polytech. Hungarica
,
17
(
3
), pp.
165
184
.
37.
Chatterjee
,
D.
, and
Khandekar
,
S.
,
2023
, “
Hybrid Solar Simulator for Long-Term Testing of Photothermal Materials
,”
IEEE Trans. Instrum. Meas.
,
72
, pp.
1
8
.
38.
Du
,
Z.
,
Zhao
,
H.
,
Jia
,
G.
, and
Li
,
X.
,
2023
, “
Design, Fabrication, and Evaluation of a Large-Area Hybrid Solar Simulator for Remote Sensing Applications
,”
Opt. Express
,
31
(
4
), pp.
6184
6202
.
39.
Newport
,
2024
, “Sol3A Class AAA Solar Simulators,” https://www.newport.com/f/class-aaa-solar-simulators, Accessed May 30, 2024.
40.
Eternal
,
2024
, “Manufacturing Solar Simulators,” https://www.eternalsun.com/product/manufacturing-solar-simulators, Accessed May 30, 2024.
41.
Chung
,
H.-H.
,
Tse
,
K.
,
Hui
,
S. R.
,
Mok
,
C.
, and
Ho
,
M.
,
2003
, “
A Novel Maximum Power Point Tracking Technique for Solar Panels Using a Sepic or Cuk Converter
,”
IEEE Trans. Power Electron.
,
18
(
3
), pp.
717
724
.
42.
Tozlu
,
Ö. F.
, and
Çalık
,
H.
,
2021
, “
A Review and Classification of Most Used MPPT Algorithms for Photovoltaic Systems
,”
Hittite J. Sci. Eng.
,
8
(
3
), pp.
207
220
.
43.
Sarvi
,
M.
, and
Azadian
,
A.
,
2022
, “
A Comprehensive Review and Classified Comparison of MPPT Algorithms in PV Systems
,”
Energy Syst.
,
13
, pp.
281
320
.
44.
Sarikh
,
S.
,
Raoufi
,
M.
,
Bennouna
,
A.
, and
Ikken
,
B.
,
2021
, “
Characteristic Curve Diagnosis Based on Fuzzy Classification for a Reliable Photovoltaic Fault Monitoring
,”
Sustain. Energy Technol. Assess.
,
43
, p.
100958
.
45.
Sayyad
,
J.
, and
Nasikkar
,
P.
,
2021
, “
Design and Development of Low Cost, Portable, On-Field IV Curve Tracer Based on Capacitor Loading for High Power Rated Solar Photovoltaic Modules
,”
IEEE Access
,
9
, pp.
70715
70731
.
46.
Zhu
,
Y.
, and
Xiao
,
W.
,
2020
, “
A Comprehensive Review of Topologies for Photovoltaic IV Curve Tracer
,”
Sol. Energy
,
196
, pp.
346
357
.
47.
Osram
,
2024
, “Halogen Lamp,” https://www.osram.com/cb/, Accessed May 30, 2024.
48.
Foxlux
,
2024
, “LED Reflector,” https://www.foxlux.com.br/produto/refletor-led/, Accessed May 30, 2024.
49.
Epistar
,
2024
, “LED,” https://www.ledestar.com/product-daohanglan/, Accessed May 30, 2024.
50.
Associação Brasileira de Normas Técnicas
,
2004
, “Norma Brasileira de Instalações Elétricas de Baixa Tensão—NBR 5410,” Norma Brasileira NBR 5410, Norma Técnica, ABNT, Rio de Janeiro.
51.
National Renewable Energy Laboratory
,
2024
, “Reference Air Mass 1.5 Spectra,” https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html
52.
Holmarc
,
2024
, “Solar Simulator,” https://www.holmarc.com/solar_simulator1.php, Accessed September 19, 2024.
You do not currently have access to this content.