Abstract

Thermal runaway from hot spots in systems such as solar energy storage poses a safety concern. Tools for rapid analysis of these systems would be exceedingly useful in their development and maintenance. The “lumped capacitance” (LC) assumption is one of these analysis tools and is limited to Biot numbers less than about 0.1. However, for systems like energy storage batteries with internal heat generation, there is no such tool. A numerical solution was, therefore, used to compute the spatiotemporal temperature of cooling spheres with varying thermal conductivity, characteristic length scale, and internal heat generation rate to determine the effects that internal heat generation has on LC accuracy. Increasing the heating time or decreasing the thermal conductivity hinders LC accuracy, while increasing the internal heat generation rate or characteristic length scale improves it. This means that larger volumes improve the accuracy of LC, completely inverting its previous relationship. The Buckingham–Pi theorem was then used to create a new nondimensional group, the Yonkist number, in order to provide an analogous Biot number for systems with heat generation. Ultimately, it was found that LC can be utilized for systems with unlimited Biot numbers, as long as the internal heat generation rate is sufficiently large or the heating time is sufficiently small to make the Yonkist number less than the Biot number. The use of the new Yonkist number removes the upper boundary from the range of Biot numbers to which the LC assumption can be applied and allows expedient heat transfer analyses for thermal runaway problems.

References

1.
Alhadri
,
M.
,
Alatawi
,
I.
,
Alshammari
,
F.
,
Haleem
,
M. A.
,
Heniegal
,
A. M. A.
,
Abdelaziz
,
G. B.
,
Ahmed
,
M. M. Z.
,
Alqsair
,
U. F.
,
Kabeel
,
A. E.
, and
Elashmawy
,
M.
,
2022
, “
Design of a Low-Cost Parabolic Concentrator Solar Tracking System: Tubular Solar Still Application
,”
ASME J. Sol. Energy Eng.
,
144
(
5
), p.
051006
.
2.
Elsakka
,
M. M.
,
Ingham
,
D. B.
,
Ma
,
L.
, and
Pourkashanian
,
M.
,
2019
, “
CFD Analysis of the Angle of Attack for a Vertical Axis Wind Turbine Blade
,”
Energy Convers. Manage.
,
182
, pp.
154
165
.
3.
Baig
,
H.
,
Kanda
,
H.
,
Asiri
,
A. M.
,
Khaja Nazeeruddin
,
M.
, and
Mallick
,
T.
,
2020
, “
Increasing Efficiency of Perovskite Solar Cells Using Low Concentrating Photovoltaic Systems
,”
Sustain. Energy Fuels
,
4
(
2
), pp.
528
537
.
4.
Hou
,
Y.
,
Vidu
,
R.
, and
Stroeve
,
P.
,
2011
, “
Solar Energy Storage Methods
,”
Ind. Eng. Chem. Res.
,
50
(
15
), pp.
8954
8964
.
5.
Celik
,
A. N.
,
Muneer
,
T.
, and
Clarke
,
P.
,
2008
, “
Optimal Sizing and Life Cycle Assessment of Residential Photovoltaic Energy Systems With Battery Storage
,”
Prog. Photovolt. Res. Appl.
,
16
(
1
), pp.
69
85
.
6.
Sajed Sadati
,
S. M.
,
Jahani
,
E.
,
Taylan
,
O.
, and
Baker
,
D. K.
,
2018
, “
Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data
,”
ASME J. Sol. Energy Eng.
,
140
(
1
), p.
011006
.
7.
Ekren
,
O.
, and
Ekren
,
B. Y.
,
2008
, “
Size Optimization of a PV/Wind Hybrid Energy Conversion System With Battery Storage Using Response Surface Methodology
,”
Appl. Energy
,
85
(
11
), pp.
1086
1101
.
8.
Gupta
,
A.
,
Saini
,
R. P.
, and
Sharma
,
M. P.
,
2009
, “
Hybrid Energy System Sizing Incorporating Battery Storage: An Analysis via Simulation Calculation
,”
2009 International Conference on Power Systems
,
Kharagpur, India
,
Dec. 27–29
, pp.
1
6
.
9.
Manimekalai
,
P.
,
Hari Kumar
,
R.
, and
Raghavan
,
S.
,
2015
, “
Enhancement of Fuzzy Controlled Photovoltaic–Diesel System With Battery Storage Using Interleaved Converter With Hybrid MPPT for Rural Home
,”
ASME J. Sol. Energy Eng.
,
137
(
6
), p.
061005
.
10.
Maharjan
,
L.
,
Inoue
,
S.
,
Akagi
,
H.
, and
Asakura
,
J.
,
2009
, “
State-of-Charge (SOC)-Balancing Control of a Battery Energy Storage System Based on a Cascade PWM Converter
,”
IEEE Trans. Power Electron.
,
24
(
6
), pp.
1628
1636
.
11.
Henson
,
W.
,
2008
, “
Optimal Battery/Ultracapacitor Storage Combination
,”
J. Power Sources
,
179
(
1
), pp.
417
423
.
12.
Yu
,
V.
, and
Chen
,
D.
,
2014
, “
Dynamic Model of a Vanadium Redox Flow Battery for System Performance Control
,”
ASME J. Sol. Energy Eng.
,
136
(
2
), p.
021005
.
13.
Zhang
,
Y.
,
Hao
,
N.
,
Lin
,
X.
, and
Nie
,
S.
,
2020
, “
Emerging Challenges in the Thermal Management of Cellulose Nanofibril-Based Supercapacitors, Lithium-Ion Batteries and Solar Cells: A Review
,”
Carbohydr. Polym.
,
234
, p.
115888
.
14.
Gurung
,
A.
, and
Qiao
,
Q.
,
2018
, “
Solar Charging Batteries: Advances, Challenges, and Opportunities
,”
Joule
,
2
(
7
), pp.
1217
1230
.
15.
Sun
,
Y.
,
Jin
,
Y.
,
Jiang
,
Z.
, and
Li
,
L.
,
2023
, “
A Review of Mitigation Strategies for Li-Ion Battery Thermal Runaway
,”
Eng. Fail. Anal.
,
149
, p.
107259
.
16.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
17.
Shamsmohammadi
,
N.
,
2024
, “
Investigating and Classifying the Level of Thermal Runaway-Induced Failure Energy Storage Systems in Photovoltaics
,”
J. Comput. Cogn. Eng.
,
3
(
1
), pp.
15
23
.
18.
Shah
,
K.
,
Chalise
,
D.
, and
Jain
,
A.
,
2016
, “
Experimental and Theoretical Analysis of a Method to Predict Thermal Runaway in Li-Ion Cells
,”
J. Power Sources
,
330
, pp.
167
174
.
19.
Talele
,
V.
,
Moralı
,
U.
,
Patil
,
M. S.
,
Panchal
,
S.
,
Fraser
,
R.
,
Fowler
,
M.
,
Thorat
,
P.
, and
Gokhale
,
Y. P.
,
2023
, “
Computational Modelling and Statistical Evaluation of Thermal Runaway Safety Regime Response on Lithium-Ion Battery With Different Cathodic Chemistry and Varying Ambient Condition
,”
Int. Commun. Heat Mass Transf.
,
146
, p.
106907
.
20.
Talele
,
V.
,
Moralı
,
U.
,
Najafi Khaboshan
,
H.
,
Patil
,
M. S.
,
Panchal
,
S.
,
Fraser
,
R.
, and
Fowler
,
M.
,
2024
, “
Improving Battery Safety by Utilizing Composite Phase Change Material to Delay the Occurrence of Thermal Runaway Event
,”
Int. Commun. Heat Mass Transf.
,
155
, p.
107527
.
21.
Zhou
,
G.
,
Yang
,
S.
,
Liu
,
Y.
,
Wang
,
J.
,
Bian
,
Y.
,
Yu
,
H.
,
Zhang
,
Q.
,
Li
,
Y.
, and
Niu
,
C.
,
2023
, “
Experimental Study on Thermal Runaway Propagation Characteristics of NCM811 Lithium-Ion Batteries With Different SOCs Induced by Dual Heat Sources
,”
Int. Commun. Heat Mass Transf.
,
149
, p.
107089
.
22.
Maheswari
,
L.
,
Sivakumaran
,
N.
,
Balasubramanian
,
K. R.
, and
Saravana Ilango
,
G.
,
2020
, “
A Unique Control Strategy to Improve the Life Cycle of the Battery and to Reduce the Thermal Runaway for Electric Vehicle Applications
,”
J. Therm. Anal. Calorim.
,
141
(
6
), pp.
2541
2553
.
23.
Sun
,
Z.
,
Guo
,
Y.
,
Zhang
,
C.
,
Xu
,
H.
,
Zhou
,
Q.
, and
Wang
,
C.
,
2023
, “
A Novel Hybrid Battery Thermal Management System for Prevention of Thermal Runaway Propagation
,”
IEEE Trans. Transp. Electrif.
,
9
(
4
), pp.
5028
5038
.
24.
Appleberry
,
M. C.
,
Kowalski
,
J. A.
,
Africk
,
S. A.
,
Mitchell
,
J.
,
Ferree
,
T. C.
,
Chang
,
V.
,
Parekh
,
V.
, et al
,
2022
, “
Avoiding Thermal Runaway in Lithium-Ion Batteries Using Ultrasound Detection of Early Failure Mechanisms
,”
J. Power Sources
,
535
, p.
231423
.
25.
Gardner
,
G. M.
,
1975
, “
A Theoretical Study of the Kinetics of Polyethylene Reactor Decompositions
,” M.Sc. thesis,
Tech University
,
Lubbock, TX
, https://ttu-ir.tdl.org/bitstream/handle/2346/61115/31295008592882.pdf?sequence=1, Accessed Mar. 1, 2023.
26.
Dole
,
E.
, and
Scannell
,
G. F.
,
1990
, “
Phillips 66 Company Houston Chemical Complex Explosion and Fire
,”
U.S. Department of Labor, Occupational Safety and Health Administration
,
WA, DC
, https://ncsp.tamu.edu/reports/phillips/first%20part.pdf, Accessed June 9, 2023.
27.
Bethea
,
R. M.
,
2007
, “
Explosion and Fire at the Phillips Company Houston Chemical Complex, Pasadena, TX
,”
Chemical Engineering Department, Texas Tech University
,
TX
, https://web.archive.org/web/20071130205701/http://www.mpri.lsu.edu/workshop/SACHE Text.pdf, Accessed June 9, 2023.
28.
Turman
,
E.
, and
Strasser
,
W.
,
2022
, “
CFD Modeling of LDPE Autoclave Reactor to Reduce Ethylene Decomposition: Part 2 Identifying and Reducing Contiguous Hot Spots
,”
Chem. Eng. Sci.
,
257
, p.
117722
.
29.
Turman
,
E.
, and
Strasser
,
W.
,
2022
, “
CFD Modeling of LDPE Autoclave Reactor to Reduce Ethylene Decomposition: Part 1 Validating Computational Methods
,”
Chem. Eng. Sci.
,
257
, p.
117720
.
30.
Turman
,
E. M.
, and
Strasser
,
W.
,
2022
, “
Leveraging Fuzzy Logic PID Controllers for Accelerating Chemical Reactor CFD
,”
Chem. Eng. Sci.
,
262
, p.
118029
.
31.
Pladis
,
P.
, and
Kiparissides
,
C.
,
2019
, “
110th Anniversary: Nonideal Mixing Phenomena in High-Pressure Low-Density Polyethylene Autoclaves: Prediction of Variable Initiator Efficiency and Ethylene Decomposition
,”
Ind. Eng. Chem. Res.
,
58
(
29
), pp.
13093
13111
.
32.
Yoder
,
E.
,
Strasser
,
W.
,
Kacinski
,
R.
, and
Jones
,
B.
,
2024
, “
Hot Spot Induced Thermal Runaway Map for Polymerization Reactors
,”
Macromol. React. Eng.
,
33.
Jung
,
E. Y.
,
Chung
,
H.
,
Choi
,
S. M.
,
Woo
,
T.
, and
Cho
,
H. H.
,
2017
, “
Conjugate Heat Transfer on Full-Coverage Film Cooling With Array Jet Impingements With Various Biot Numbers
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
1
8
.
34.
Ramachandran
,
S. G.
, and
Shih
,
T. I.-P.
,
2015
, “
Biot Number Analogy for Design of Experiments in Turbine Cooling
,”
ASME J. Turbomach.
,
137
(
6
), p.
061002
.
35.
Liu
,
X.
,
Zhang
,
C.
,
Song
,
L.
, and
Li
,
J.
,
2021
, “
Influence of Biot Number and Geometric Parameters on the Overall Cooling Effectiveness of Double Wall Structure With Pins
,”
Appl. Therm. Eng.
,
198
, p.
117439
.
36.
Abdul Gaffar
,
S.
,
Ramachandra Prasad
,
V.
, and
Vijaya
,
B.
,
2017
, “
Computational Study of Non-Newtonian Eyring–Powell Fluid From a Vertical Porous Plate With Biot Number Effects
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
7
), pp.
2747
2765
.
37.
Belekar
,
V. V.
,
Murphy
,
E. J.
, and
Subramaniam
,
S.
,
2023
, “
Analytical Solution to Heat Transfer in Stationary Wet Granular Mixtures With Time-Varying Boundary Conditions
,”
Int. Commun. Heat Mass Transf.
,
140
, p.
106500
.
38.
Zhang
,
D.
,
Liu
,
H.
,
Chen
,
P.
, and
Mao
,
J.
,
2024
, “
Numerical Analysis on Multiple Parameters for Overall Cooling Effectiveness of Impingement Effusion Cooling With Low Reynolds Number
,”
Int. Commun. Heat Mass Transf.
,
153
, p.
107366
.
39.
Cho
,
Y.-S.
, and
Sung
,
S.
,
2020
, “
Effect of Biot Number on Unsteady Reaction-Diffusion Phenomena and Analytical Solutions of Coupled Governing Equations in Porous Particles With Various Shapes
,”
Korean J. Chem. Eng.
,
37
(
11
), pp.
1836
1858
.
40.
Ruivo
,
C. R.
,
Costa
,
J. J.
, and
Figueiredo
,
A. R.
,
2008
, “
On the Validity of Lumped Capacitance Approaches for the Numerical Prediction of Heat and Mass Transfer in Desiccant Airflow Systems
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
282
292
.
41.
Burke
,
R.
,
Copeland
,
C.
, and
Duda
,
T.
,
2014
, “
Investigation Into the Assumptions for Lumped Capacitance Modelling of Turbocharger Heat Transfer
,”
6th International Conference on Simulation and Testing
,
Berlin, Germany
,
May 15–16
.
42.
Zhang
,
X.
,
Klein
,
R.
,
Subbaraman
,
A.
,
Chumakov
,
S.
,
Li
,
X.
,
Christensen
,
J.
,
Linder
,
C.
, and
Kim
,
S. U.
,
2019
, “
Evaluation of Convective Heat Transfer Coefficient and Specific Heat Capacity of a Lithium-Ion Battery Using Infrared Camera and Lumped Capacitance Method
,”
J. Power Sources
,
412
, pp.
552
558
.
43.
Jurumenha
,
D. S.
, and
Sphaier
,
L. A.
,
2011
, “
Suitability Analysis of Lumped-Capacitance Formulations for Adsorbed Gas Storage
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2458
2463
.
44.
Mahamud
,
R.
, and
Park
,
C.
,
2013
, “
Spatial-Resolution, Lumped-Capacitance Thermal Model for Cylindrical Li-Ion Batteries Under High Biot Number Conditions
,”
Appl. Math. Model.
,
37
(
5
), pp.
2787
2801
.
45.
Sphaier
,
L. A.
, and
Jurumenha
,
D. S.
,
2012
, “
Improved Lumped-Capacitance Model for Heat and Mass Transfer in Adsorbed Gas Discharge Operations
,”
Energy
,
44
(
1
), pp.
978
985
.
46.
Xu
,
B.
,
Li
,
P.-W.
, and
Chan
,
C. L.
,
2012
, “
Extending the Validity of Lumped Capacitance Method for Large Biot Number in Thermal Storage Application
,”
Sol. Energy
,
86
(
6
), pp.
1709
1724
.
47.
Tegenaw
,
P. D.
,
Gebrehiwot
,
M. G.
, and
Vanierschot
,
M.
,
2019
, “
On the Comparison Between Computational Fluid Dynamics (CFD) and Lumped Capacitance Modeling for the Simulation of Transient Heat Transfer in Solar Dryers
,”
Sol. Energy
,
184
, pp.
417
425
.
48.
Jian
,
Y.
,
Bai
,
F.
,
Falcoz
,
Q.
,
Xu
,
C.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2015
, “
Thermal Analysis and Design of Solid Energy Storage Systems Using a Modified Lumped Capacitance Method
,”
Appl. Therm. Eng.
,
75
, pp.
213
223
.
49.
Ranmode
,
V.
,
Singh
,
M.
, and
Bhattacharya
,
J.
,
2019
, “
Analytical Formulation of Effective Heat Transfer Coefficient and Extension of Lumped Capacitance Method to Simplify the Analysis of Packed Bed Storage Systems
,”
Sol. Energy
,
183
, pp.
606
618
.
50.
Alhama
,
F.
, and
Campo
,
A.
,
2001
, “
The Connection Between the Distributed and Lumped Models for Asymmetric Cooling of Long Slabs by Heat Convection
,”
Int. Commun. Heat Mass Transf.
,
28
(
1
), pp.
127
137
.
51.
Khalilian
,
M.
,
2017
, “
Experimental Investigation and Theoretical Modelling of Heat Transfer in Circular Solar Ponds by Lumped Capacitance Model
,”
Appl. Therm. Eng.
,
121
, pp.
737
749
.
52.
Bazinski
,
S. J.
, and
Wang
,
X.
,
2016
, “
Predicting Heat Generation in a Lithium-Ion Pouch Cell Through Thermography and the Lumped Capacitance Model
,”
J. Power Sources
,
305
, pp.
97
105
.
53.
Erden
,
H. S.
,
Khalifa
,
H. E.
, and
Schmidt
,
R. R.
,
2014
, “
A Hybrid Lumped Capacitance-CFD Model for the Simulation of Data Center Transients
,”
HVACR Res.
,
20
(
6
), pp.
688
702
.
54.
Soria-Verdugo
,
A.
,
Rubio-Rubio
,
M.
,
Goos
,
E.
, and
Riedel
,
U.
,
2018
, “
Combining the Lumped Capacitance Method and the Simplified Distributed Activation Energy Model to Describe the Pyrolysis of Thermally Small Biomass Particles
,”
Energy Convers. Manage.
,
175
, pp.
164
172
.
55.
Virag
,
Z.
,
Živić
,
M.
, and
Krizmanić
,
S.
,
2011
, “
Cooling of a Sphere by Natural Convection—The Applicability of the Lumped Capacitance Method
,”
Int. J. Heat Mass Transf.
,
54
(
11–12
), pp.
2303
2309
.
56.
Kircher
,
K. J.
, and
Max Zhang
,
K.
,
2015
, “
On the Lumped Capacitance Approximation Accuracy in RC Network Building Models
,”
Energy Build.
,
108
, pp.
454
462
.
57.
Chen
,
X. D.
, and
Peng
,
X.
,
2005
, “
Modified Biot Number in the Context of Air Drying of Small Moist Porous Objects
,”
Dry. Technol.
,
23
(
1–2
), pp.
83
103
.
58.
Dincer
,
I.
, and
Hussain
,
M. M.
,
2004
, “
Development of a New Biot Number and Lag Factor Correlation for Drying Applications
,”
Int. J. Heat Mass Transf.
,
47
(
4
), pp.
653
658
.
59.
Giner
,
S. A.
,
Irigoyen
,
R. M. T.
,
Cicuttín
,
S.
, and
Fiorentini
,
C.
,
2010
, “
The Variable Nature of Biot Numbers in Food Drying
,”
J. Food Eng.
,
101
(
2
), pp.
214
222
.
60.
Cisterna
,
L. H. R.
,
Fronza
,
E. L.
,
Cardoso
,
M. C. K.
,
Milanez
,
F. H.
, and
Mantelli
,
M. B. H.
,
2021
, “
Modified Biot Number Models for Startup and Continuum Limits of High Temperature Thermosyphons
,”
Int. J. Heat Mass Transf.
,
165
(
Part B
), p.
120699
.
61.
Lin
,
T. F.
,
Hawks
,
K. H.
, and
Leidenfrost
,
W.
,
1983
, “
Analysis of Viscous Dissipation Effect on Thermal Entrance Heat Transfer in Laminar Pipe Flows With Convective Boundary Conditions
,”
Waerme-Stoffuebertrag
,
17
(
2
), pp.
97
105
.
62.
Strasser
,
W.
,
2024
, “
How Irregular Geometry and Flow Waveform Affect Pulsating Arterial Mass Transfer
,”
ASME J. Biomech. Eng.
,
146
(
12
), p.
121011
.
63.
Strasser
,
W.
,
2022
, “
The Nature of ‘Searching’ Vortices in Fluidic Logic Driven by a Switching Jet
,”
J. Fluids Eng.
,
144
(
8
), p.
081303
.
64.
Strasser
,
W.
,
Kacinski
,
R.
,
Wilson
,
D.
,
Petrov
,
V.
, and
Manera
,
A.
,
2024
, “
It’s About Time: Jet Interactions in an Asymmetrical Plenum
,”
Nucl. Technol.
,
210
(
7
), pp.
1185
1211
.
65.
Kacinski
,
R.
,
Strasser
,
W.
,
Leonard
,
S.
,
Prichard
,
R.
, and
Truxel
,
B.
,
2023
, “
Validation of a Human Upper Airway Computational Fluid Dynamics Model for Turbulent Mixing
,”
J. Fluids Eng.
,
145
(
12
), p.
121203
.
66.
Zhang
,
S. X.
,
Read
,
N. K.
, and
Ray
,
W. H.
,
1996
, “
Runaway Phenomena in Low-Density Polyethylene Autoclave Reactors
,”
AIChE J.
,
42
(
10
), pp.
2911
2925
.
67.
Harmon Ray
,
W.
, and
Villa
,
C. M.
,
2000
, “
Nonlinear Dynamics Found in Polymerization Processes—A Review
,”
Chem. Eng. Sci.
,
55
(
2
), pp.
275
290
.
You do not currently have access to this content.