Abstract

Along with the ASTM Division IV subcommittee on Tissue Engineered Medical Products, the National Institute of Standards and Technology is developing a geometric reference scaffold. This paper describes the methodology applied to the three different types of candidate reference scaffolds to quantify their structure and rank them according to quality metrics. In this work, we detail this methodology using the candidate reference scaffold produced by stereolithography. We perform X-ray micro-computed tomography on three of the manufactured scaffolds and compute total porosity, pore size distribution, and pore length for each. We compare these quantities to those of the model scaffold using statistical measures of variational distance, relative uncertainty, and uniformity. Through this evaluation, we find that the scaffold produced by stereolithography agrees well with its model and merits further consideration as a reference scaffold.

References

1.
Tesk
,
J. A.
, “
Special Report: NIST Workshop on Reference Data for the Properties of Biomaterials
,”
J. Biomed. Mater. Res.
 0021-9304 https://doi.org/10.1002/jbm.1042, Vol.
58
, No.
5
,
2001
, pp.
463
466
.
2.
Tesk
,
J. A.
and
Karam
,
L. R.
, “
NIST and Standards for Tissue Engineered Medical Products
,”
ASTM STP 1452
,
Schutte
E.
,
Picciolo
G. L.
, and
Kaplan
D. S.
, Eds.,
2003
,
ASTM International
,
West Conshohocken, PA
.
3.
Tesk
,
J. A.
, “
ASTM Task Force Open for Development of Reference Scaffolds for Tissue Engineering
,”
Biomaterials Forum
, Vol.
1st Quarter
,
2004
, p. 14.
4.
Jabbari
,
E.
,
Lee
,
K. W.
,
Ellison
,
A. C.
,
Moore
,
M. J.
,
Tesk
,
J. A.
, and
Yazemski
,
M. J.
, “
Fabrication of Shape Specific Biodegradable Porous Polymeric Scaffolds with Controlled Interconnectivity by Solid Free-form Microprinting
,”
Proceedings of 7th World Biomaterials Congress
,
2004
, p. 1348.
5.
Cooke
,
M. N.
,
Fisher
,
J. P.
,
Dean
,
D.
,
Rimnac
,
C.
, and
Mikos
,
A. G.
, “
Use of Stereolithography to Manufacture Critical-sized 3D Biodegradable Scaffolds for Bone Ingrowth
,”
J. Biomed. Mater. Res.
 0021-9304 https://doi.org/10.1002/jbm.b.10485, Vol.
64B
, No.
2
,
2003
pp.
65
69
.
6.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
, “
Multi-nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
 1355-2546 https://doi.org/10.1108/13552540510573347, Vol.
11
, No
1
,
2005
pp.
9
17
.
7.
Yeong
,
W. Y.
,
Chua
,
C. K.
,
Leong
,
K. F.
, and
Chandrasekaran
,
M.
, “
Rapid Prototyping in Tissue Engineering: Challenges and Potential
,”
Trends Biotechnol.
 0167-7799 https://doi.org/10.1016/j.tibtech.2004.10.004, Vol.
22
, No
12
,
2004
, pp.
643
652
.
8.
Hutmacher
,
D. W.
,
Sittinger
,
M.
, and
Risbud
,
M. V.
, “
Scaffold-based Tissue Engineering: Rationale for Computer-aided Design and Solid Free-form Fabrication Systems
,”
Trends Biotechnol.
 0167-7799 https://doi.org/10.1016/j.tibtech.2004.05.005, Vol.
22
, No.
7
,
2004
, pp.
354
362
.
9.
Leong
,
K. F.
,
Cheah
,
C. M.
, and
Chua
,
C. K.
, “
Solid Free-form Fabrication of Three-dimensional Scaffolds for Engineering Replacement Tissues and Organs
,”
Biomaterials
 0142-9612 https://doi.org/10.1016/S0142-9612(03)00030-9, Vol.
24
, No.
13
,
2003
, pp.
2363
2378
.
10.
Yang
,
S.
,
Leong
,
K. F.
,
Du
,
Z.
, and
Chua
,
C. K.
, “
The Design of Scaffolds for Use in Tissue Engineering. Part II. Rapid Prototyping Techniques
,”
Tissue Eng.
 1076-3279 https://doi.org/10.1089/107632702753503009, Vol.
8
, No.
1
,
2002
, pp.
1
11
.
11.
Basu
,
S.
,
Cunningham
,
L. P.
,
Pins
,
G. D.
,
Bush
,
K. A.
,
Taboada
,
R.
,
Howell
,
A. R.
,
Wang
,
J.
, and
Campagnola
,
P. J.
, “
Multiphoton Excited Fabrication of Collagen Matrixes Cross-linked by a Modified Benzophenone Dimer: Bioactivity and Enzymatic Degradation
,”
Biomacromolecules
 1525-7797 https://doi.org/10.1021/bm049258y, Vol.
6
, No.
3
,
2005
, pp.
1465
1474
.
12.
Ho
,
S. T.
and
Hutmacher
,
D. W.
, “
A Comparison of Micro CT With Other Techniques Used in the Characterization of Scaffolds
,”
Biomaterials
 0142-9612 https://doi.org/10.1016/j.biomaterials.2005.08.035, Vol.
27
, No.
8
,
2005
, pp.
1362
1376
.
13.
Moore
,
M. J.
,
Jabbari
,
E.
,
Ritman
,
E. L.
,
Lu
,
L.
,
Currier
,
B. L.
,
Windebank
,
A. J.
, and
Yaszemski
,
M. J.
, “
Quantitative Analysis of Interconnectivity of Porous Biodegradable Scaffolds with Micro-computed Tomography
,”
J. Biomed. Mater. Res. A
, Vol.
71
, No.
2
,
2004
, pp.
258
267
.
14.
Sodian
,
R.
,
Fu
,
P.
,
Lueders
,
C.
,
Szymanski
,
D.
,
Fritsche
,
C.
,
Gutberlet
,
M.
,
Hoerstrup
,
S. P.
,
Hausmann
,
H.
,
Lueth
,
T.
, and
Hetzer
,
R.
, “
Tissue Engineering of Vascular Conduits: Fabrication of Custom-made Scaffolds Using Rapid Prototyping Techniques
,”
Thorac. Cardiovasc. Surg.
 0171-6425, Vol.
53
, No.
3
,
2005
, pp.
144
149
.
15.
Lin
,
A. S.
,
Barrows
,
T. H.
,
Cartmell
,
S. H.
, and
Guldberg
,
R. E.
, “
Microarchitectural and Mechanical Characterization of Oriented Porous Polymer Scaffolds
,”
Biomaterials
 0142-9612 https://doi.org/10.1016/S0142-9612(02)00361-7, Vol.
24
, No.
3
,
2003
, pp.
481
489
.
16.
Cartmell
,
S.
,
Huynh
,
K.
,
Lin
,
A.
,
Nagaraja
,
S.
, and
Guldberg
,
R.
, “
Quantitative Microcomputed Tomography Analysis of Mineralization Within Three-dimensional Scaffolds in Vitro
,”
J. Biomed. Mater. Res. A
, Vol.
69
, No.
1
,
2004
, pp.
97
104
.
17.
Jones
,
A. C.
,
Milthorpe
,
B.
,
Averdunk
,
H.
,
Limaye
,
A.
,
Senden
,
T. J.
,
Sakellariou
,
A.
,
Sheppard
,
A. P.
,
Sok
,
R. M.
,
Knackstedt
,
M. A.
,
Brandwood
,
A.
,
Rohner
,
D.
, and
Hutmacher
,
D. W.
, “
Analysis of 3D Bone Ingrowth into Polymer Scaffolds via Micro-computed Tomography Imaging
,”
Biomaterials
 0142-9612 https://doi.org/10.1016/j.biomaterials.2004.01.047, Vol.
25
, No.
20
,
2004
, pp.
4947
4954
.
18.
Blom
,
G.
,
Holst
,
L.
, and
Sandell
,
D.
,
Problems and Snapshots From the World of Probability
,
Springer-Verlag
,
New York, NY
,
1994
.
19.
Dunkers
,
J. P.
,
Leigh
,
S. D.
,
Cicerone
,
M. T.
,
Landis
,
F. A.
,
Wang
,
F.
, and
Tesk
,
J. A.
, “
NIST Development Of Reference Material Scaffolds for Tissue Engineering
,”
Proceedings of IMECE 2005: 2005 ASME International Mechanical Engineering Congress and Exposition
,
2005
, Abs. No. 82012.
20.
Ketcham
,
R. A.
, “
Computational Methods for Quantitative Analysis of Three-Dimensional Features in Geological Specimens
,”
Geosphere
, Vol.
1
, No.
1
,
2005
pp.
32
41
.
22.
Efron
,
F. B.
and
Tibshirani
,
R. J.
,
Introduction to the Bootstrap
,
Chapman and Hall
,
New York, NY
,
1993
.
This content is only available via PDF.
You do not currently have access to this content.