This study is concerned with building a computational fluid dynamics (CFD) model to simulate the combustion process occurring in the combustion chamber of some domestic boilers. The burner used in this boiler is a conventional cylindrical premix burner with small inlet holes on its surface. A two-dimensional CFD model is built to simulate the combustion chamber domain, and the partially premixed combustion model with a postprocessor for NOx calculations is used to simulate the combustion process inside the combustion chamber. A complete description of the formation characteristics of NOx produced from the boiler is discussed in detail. A comparison between the CFD numerical results and the experimental measurements at different boiler loads is performed in order to validate the numerical model and investigate the accuracy of the CFD model. The validated CFD model is used to investigate the effect of different boundaries temperatures and the mixture inlet velocity on the flue gas average temperature, residence time, and hence the CO and NOx concentrations produced from the combustion chamber. The concept of changing the mixture inlet velocity is found to be an effective method to improve the design of the burner in order to reduce the pollutant emissions produced from the boiler with no effect on the boiler efficiency.

1.
Jannemann
,
T. B.
, 1996, “
The Development of Atmospheric Burners With Respect to the Increasing Emission Restrictions
,”
First European Conference on Small Burner Technology and Heating Equipment
, Zurich, Switzerland.
2.
Twist
,
T.
,
Hargreaves
,
K.
, and
Ceramic
,
D.
, 1995, “Emissions Control and Its Implications on the Domestic Gas Burner Manufacturer,” Second International Conference on Combustion and Emission Control, 11, p.
1
10
.
3.
IPCC
, 1993,
International IPCC Workshop on Methane and Nitrous Oxide IPOC Change
, Netherlands.
4.
Dupont
,
V.
,
Pourkashanian
,
M.
,
Richardson
,
A.
, and
Williams
,
A.
, 1994, “
Methane Emissions at Ignition and Extinction of Natural Gas Fired Water Heating Unit
,”
Spring Technical Meeting of Combustion Institute
,
The Canadian Section Queen’s University
,
Ontario, Canada
.
5.
Coats
,
C.
, 2008, “
Excitation of Thermoacoustic Oscillations by Premixing Domestic Gas Burners
,”
Combust. Sci. Technol.
0010-2202,
180
(
2
), pp.
314
342
.
6.
Bowman
,
C. T.
, 1992, “
Control of Combustion-Generated Nitrogen Oxide Emissions: Technology Driven by Regulations
,” pp.
859
878
.
7.
Aigner
,
M.
,
Mayer
,
A.
,
Schiessel
,
P.
, and
Strittmatter
,
W.
, 1990, “
Second Generation Low Emission Combustors for ABB Gas Turbines: Test Under Full Engine Conditions
,” ASME Paper No. 90-GT-308.
8.
Döbbeling
,
K.
,
Hellat
,
J.
, and
Koch
,
H.
, 2007, “
25 Years of BBC/ABB/Alstom Lean Premix Combustion Technologies
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
, pp.
2
12
.
9.
Koch
,
H.
,
Brühwiler
,
E.
,
Strittmatter
,
W.
, and
Sponholz
,
H. J.
, 1985, “
The Development of a Dry Low NOx Combustion Chamber and the Results Achieved
,”
International Congress on Combustion Engines
, Oslo, Norway.
10.
Marnet
,
C.
,
Kassebohm
,
B.
,
Koch
,
H.
, and
Sponholz
,
H. J.
, 1984, “
NOx-Reduction in the Lausward Combined Cycle Gas Turbine Unit
,”
VGB Conference “Power Plants 84”
.
11.
Driscoll
,
J.
,
Chen
,
R.
, and
Yoon
,
Y.
, 1992, “
Nitric Oxide Levels of Turbulent Jet Diffusion Flames: Effects of Residence Time and Damkohler Number
,”
Combust. Flame
0010-2180,
88
(
1
), pp.
37
49
.
12.
Lee
,
C.
,
Oh
,
C.
, and
Kim
,
J.
, 2004, “
Numerical and Experimental Investigations of the NOx Emission Characteristics of CH4-Air Coflow Jet Flames
,”
Fuel
0016-2361,
83
(
17–18
), pp.
2323
2334
.
13.
Smooke
,
M. D.
,
Lin
,
P.
,
Lam
,
J. K.
, and
Ling
,
M. B.
, 1990, “
Computational and Experimental Study of a Laminar Axisymmetric Methane-Air Diffusion Flame
,”
Proc. Combust. Inst.
1540-7489,
23
, pp.
575
582
.
14.
Dupont
,
V.
,
Pourkashanian
,
M.
,
Williams
,
A.
, and
Woolley
,
R.
, 1993, “
The Reduction of NOx Formation in Natural Gas Burner Flames
,”
Fuel
0016-2361,
72
(
4
), pp.
497
503
.
15.
Elkotb
,
M.
,
Salem
,
H.
,
Shehata
,
H.
, and
Abou-Arab
,
T.
, 1990, “
Factors Affecting NOx Formation in Turbulent Premixed Confined Flames
,”
Fuel
0016-2361,
69
(
1
), pp.
65
71
.
16.
Semerjian
,
H.
, and
Vranos
,
A.
, 1977, “
NOx Formation in Premixed Turbulent Flame
,”
Proc. Combust. Inst.
1540-7489,
16
, pp.
169
179
.
17.
Correa
,
S. M.
, 1993, “
A Review of NOx Formation Under Gas-Turbines Combustion Conditions
,”
Combust. Sci. Technol.
0010-2202,
87
, pp.
329
362
.
18.
Drake
,
M. C.
,
Ratcliffe
,
J. W.
,
Blint
,
R. J.
,
Carter
,
C. D.
, and
Laurendeau
,
N. M.
, 1990, “
Measurements and Modeling of Flamefront NO Formation and Superequilibrium Radical Concentrations in Laminar High-Pressure Premixed Flames
,”
Proceedings of the Combustion Institute
, pp.
387
395
.
19.
Hwang
,
C.
,
Hyun
,
S.
, and
Lee
,
C.
, 2008, “
Effects of Heat Loss on NOx Emission in the Postflame Region of Premixed CH4-Air Combustion
,”
Energy Fuels
0887-0624,
22
(
2
), pp.
996
1003
.
20.
Dupont
,
V.
, 1994, “
Emission of Nitrogen Oxides from Natural Gas Fired Equipments
,” Ph.D. thesis, University of Leeds, Leeds, UK.
21.
Sankaran
,
R.
,
Hawkes
,
E. R.
,
Chen
,
J. H.
,
Lu
,
T.
, and
Law
,
C. K.
, 2007, “
Structure of a Spatially-Developing Turbulent Lean Methane-Air Bunsen Flame
,”
Proceedings of the Combustion Institute
, pp.
1291
1298
.
22.
Andrews
,
G. E.
, 2007, Course Notes on “
Combustion in Boiler and Furnaces
,” Faculty of Engineering, University of Leeds.
23.
Baukal
,
C.
, 2004,
Industrial Burners Handbook
,
CRC
,
New York
.
24.
Gasser Hassan
,
Pourkashanian
,
M.
,
Ingham
,
D.
,
Ma
,
L.
,
Taylor
,
S.
, and
Peronski
,
L.
, 2008, “
CFD Simulation for the Combustion Process Inside Domestic Boilers
,”
The Eighth European Conference on Industrial Furnaces and Boilers
, Portugal.
25.
Peters
,
N.
, 2000,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
26.
Veynante
,
D.
, and
Vervisch
,
L.
, 2002, “
Turbulent Combustion Modeling
,”
Prog. Energy Combust. Sci.
0360-1285,
28
(
3
), pp.
193
266
.
27.
Zimont
,
V.
, 2000, “
Gas Premixed Combustion at High Turbulence. Turbulent Flame Closure Combustion Model
,”
Exp. Therm. Fluid Sci.
0894-1777,
21
(
1–3
), pp.
179
186
.
28.
Jones
,
W.
, and
Whitelaw
,
J.
, 1982, “
Calculation Methods for Turbulent Reacting Flows: A Review
,”
Combust. Flame
0010-2180,
48
, pp.
1
26
.
29.
Kyne
,
A.
, 2001, “
Experimental and Theoretical Investigation of the Oxidation of Kerosene
,” Ph.D. thesis, Department of Fuel and Energy, University of Leeds.
30.
Faravelli
,
T.
,
Bua
,
L.
,
Frassoldati
,
A.
,
Antifora
,
A.
,
Tognotti
,
L.
, and
Ranzi
,
E.
, 2001, “
A New Procedure for Predicting NOx Emissions From Furnaces
,”
Comput. Chem. Eng.
0098-1354,
25
(
4–6
), pp.
613
618
.
31.
Simon
,
B.
,
Marco
,
G.
,
Iek
,
R.
,
Alessio
,
F.
, and
Faravelli
,
T.
,
Cuoci
,
A. A.
, and
Li
,
X. J.
, 2008, “
The Design of Ultra-Low NOx in Critical Furnaces
,”
The Eighth European Conference on Industrial Furnaces and Boilers
, Portugal.
32.
Fluent Inc.
, 2006, User Guide to Fluent 6.3.
33.
Goodger
,
E.
, 1977,
Combustion Calculations: Theory, Worked Examples and Problems
Macmillan
,
London
.
34.
Turns
,
S.
, 1996,
An Introduction to Combustion: Concepts and Applications
,
McGraw-Hill
,
New York
.
35.
Hand
,
G.
,
Missaghi
,
M.
,
Pourkashanain
,
M.
, and
Williams
,
A.
, 1989, “
Experimental Studies and Computer Modelling of Nitrogen Oxides in a Cylindrical Natural Gas Furnace
,” pp.
24
26
.
36.
Missaghi
,
M.
, 1987,
Mathematical Modelling of Chemical Sources in Turbulent Combustion
,
The University of Leeds
,
Leeds, UK
.
37.
Janicka
,
J.
, and
Kollmann
,
W.
, 1978, “
A Two-Variable Formulation for the Treatment of Chemical Reactions in Turbulent H2-Air Diffusion Flames
,”
17th Symposium (International) on Combustion
, The Combustion Institute, Pittsburgh, PA.
38.
Janicka
,
J.
, and
Kollmann
,
W.
, 1982, “
A Numerical Study of Oscillating Flow Around a Circular Cylinder
,”
Combust. Flame
0010-2180,
44
, pp.
319
336
.
39.
Zeldovich
,
Y.
, 1946, “
The Oxidation of Nitrogen in Combustion and Explosions
,”
Acta Physicochim. URSS
0365-1460,
21
(
4
), pp.
577
628
.
40.
Fenimore
,
C.
, 1971, “
Formation of Nitric Oxide in Premixed Hydrocarbon Flames
,”
13th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
, pp.
373
380
.
41.
Malte
,
P.
, and
Pratt
,
D.
, 1974, “
Measurement of Atomic Oxygen and Nitrogen Oxides in Jet-Stirred Combustion
,”
15th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
, pp.
1061
1070
.
You do not currently have access to this content.