Abstract

The present study reports an experimental evaluation of thermal conductivity of Al2O3/pure coconut oil nano fluids with solid volume fraction varying from 0.1% to 1.2% at a temperature ranging from 303 K to 413 K, respectively. Additionally, the thermophysical properties such as thermal diffusivity, density, and specific heat were also measured. The effect of solid volume fraction and temperature on thermophysical properties of nano fluids was examined. The results confirmed that the thermal conductivity of nano fluids was higher than that of the base fluid with an increase in the solid volume fraction and temperature. Apart from this, the efficiency of nano fluids for the heat transfer application has been evaluated for optimization based on different figures of merit. Further, the experimental thermal conductivity data were compared with different existing models and correlations as the thermal conductivity enhancement of the nano fluid is directly or indirectly a function of almost all thermophysical properties. Hence, a novel dimensionless correlation was developed for predicting the thermal conductivity of pure coconut oil/Al2O3 nano fluids in terms of almost all the thermophysical parameters calculated from the experimental data.

References

1.
Prasher
,
R.
,
Evans
,
W.
,
Meakin
,
P.
,
Fish
,
J.
,
Phelan
,
P.
, and
Keblinski
,
P.
,
2006
, “
Effect of Aggregation on Thermal Conduction in Colloidal Nanofluids
,”
Appl. Phys. Lett.
,
89
(
14
), pp.
2004
2007
. 10.1063/1.2360229
2.
Yu
,
W.
,
France
,
D. M.
,
Routbort
,
J. L.
, and
Choi
,
S. U. S.
,
2008
, “
Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements
,”
Heat Transfer Eng.
,
29
(
5
), pp.
432
460
. 10.1080/01457630701850851
3.
Azwadi
,
N.
,
Sidik
,
C.
,
Samion
,
S.
,
Ghaderian
,
J.
,
Noor
,
M.
,
Witri
,
A.
, and
Yazid
,
M.
,
2017
, “
Recent Progress on the Application of Nanofluids in Minimum Quantity Lubrication Machining: A Review
,”
Int. J. Heat Mass Transfer
,
108
(
Part A
), pp.
79
89
. 10.1016/j.ijheatmasstransfer.2016.11.105
4.
Colangelo
,
G.
,
Favale
,
E.
,
Miglietta
,
P.
,
Milanese
,
M.
, and
de Risi
,
A.
,
2016
, “
Thermal Conductivity, Viscosity and Stability of Al2O3-Diathermic Oil Nanofluids for Solar Energy Systems
,”
Energy
,
95
(
1
), pp.
124
136
. 10.1016/j.energy.2015.11.032
5.
Vajjha
,
R. S.
, and
Das
,
D. K.
,
2009
, “
Specific Heat Measurement of Three Nanofluids and Development of New Correlations
,”
ASME J. Heat Transfer
,
131
(
7
), p.
071601
. 10.1115/1.3090813
6.
Zhou
,
S. Q.
, and
Ni
,
R.
,
2008
, “
Measurement of the Specific Heat Capacity of Water-Based Al2O3 Nanofluid
,”
Appl. Phys. Lett.
,
92
(
093123
), pp.
1
4
.
7.
Wei
,
B.
,
Zou
,
C.
, and
Li
,
X.
,
2017
, “
Experimental Investigation on Stability and Thermal Conductivity of Diathermic Oil Based TiO2 Nanofluids
,”
Int. J. Heat Mass Transfer
,
104
(
1
), pp.
537
543
. 10.1016/j.ijheatmasstransfer.2016.08.078
8.
Fontes
,
D. H.
,
Ribatski
,
G.
, and
Bandarra Filho
,
E. P.
,
2015
, “
Experimental Evaluation of Thermal Conductivity, Viscosity and Breakdown Voltage AC of Nanofluids of Carbon Nanotubes and Diamond in Transformer Oil
,”
Diam. Relat. Mater.
,
58
(
9
), pp.
115
121
. 10.1016/j.diamond.2015.07.007
9.
Liu
,
H.
,
Bai
,
M.
,
Lv
,
J.
,
Zhang
,
L.
,
Wang
,
P.
, and
Hu
,
C.
,
2014
, “
Experimental Study and Analysis of Lubricants Dispersed With Nanodiamond Particles on Diesel Engine
,”
ASME J. Nanotechnol. Eng. Med.
,
5
(
4
), p.
041001
. 10.1115/1.4028733
10.
Ilyas
,
S. U.
,
Pendyala
,
R.
,
Narahari
,
M.
, and
Susin
,
L.
,
2017
, “
Stability, Rheology and Thermal Analysis of Functionalized Alumina- Thermal Oil-Based Nanofluids for Advanced Cooling Systems
,”
Energy Convers. Manag.
,
142
(
6
), pp.
215
229
. 10.1016/j.enconman.2017.01.079
11.
Asadi
,
A.
,
Asadi
,
M.
,
Rezaniakolaei
,
A.
,
Rosendahl
,
L. A.
,
Afrand
,
M.
, and
Wongwises
,
S.
,
2018
, “
Heat Transfer Efficiency of Al2O3-MWCNT/Thermal Oil Hybrid Nanofluid as a Cooling Fluid in Thermal and Energy Management Applications: An Experimental and Theoretical Investigation
,”
Int. J. Heat Mass Transfer
,
117
(
2
), pp.
474
486
. 10.1016/j.ijheatmasstransfer.2017.10.036
12.
Yasinskiy
,
A.
,
Navas
,
J.
,
Aguilar
,
T.
,
Alcántara
,
R.
,
Gallardo
,
J. J.
,
Sánchez-Coronilla
,
A.
,
Martín
,
E. I.
,
De Los Santos
,
D.
, and
Fernández-Lorenzo
,
C.
,
2018
, “
Dramatically Enhanced Thermal Properties for TiO2-Based Nanofluids for Being Used as Heat Transfer Fluids in Concentrating Solar Power Plants
,”
Renew. Energy
,
119
(
4
), pp.
809
819
. 10.1016/j.renene.2017.10.057
13.
Satti
,
J. R.
,
Das
,
D. K.
, and
Ray
,
D. R.
,
2016
, “
Measurements of Densities of Propylene Glycol-Based Nanofluids and Comparison With Theory
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), pp.
1
11
. 10.1115/1.4032671
14.
Asadi
,
A.
,
Asadi
,
M.
,
Rezaniakolaei
,
A.
,
Rosendahl
,
L. A.
, and
Wongwises
,
S.
,
2017
, “
An Experimental Investigation on Heat Transfer Capability of Mg(OH)2/MWCNT-Engine Oil Hybrid Nano-Lubricant Adopted as an Automotive Coolant and Lubricant
,”
Appl. Therm. Eng.
,
129
, pp.
577
586
. 10.1016/j.applthermaleng.2017.10.074
15.
Padmini
,
R.
,
Vamsi Krishna
,
P.
, and
Krishna Mohana Rao
,
G.
,
2016
, “
Effectiveness of Vegetable Oil Based Nanofluids as Potential Cutting Fluids in Turning AISI 1040 Steel
,”
Tribol. Int.
,
94
(
2
), pp.
490
501
. 10.1016/j.triboint.2015.10.006
16.
Zin
,
V.
,
Barison
,
S.
,
Agresti
,
F.
,
Colla
,
L.
,
Pagura
,
C.
, and
Fabrizio
,
M.
,
2016
, “
Improved Tribological and Thermal Properties of Lubricants by Graphene Based Nano-Additives
,”
RSC Adv.
,
6
(
64
), pp.
59477
59486
. 10.1039/C6RA12029F
17.
Chai
,
Y. H.
,
Yusup
,
S.
,
Chok
,
V. S.
,
Arpin
,
M. T.
, and
Irawan
,
S.
,
2016
, “
Investigation of Thermal Conductivity of Multi Walled Carbon Nanotube Dispersed in Hydrogenated Oil Based Drilling Fluids
,”
Appl. Therm. Eng.
,
107
(
8
), pp.
1019
1025
. 10.1016/j.applthermaleng.2016.07.017
18.
Gajrani
,
K. K.
,
Suvin
,
P. S.
,
Kailas
,
S. V.
, and
Mamilla
,
R. S.
,
2019
, “
Thermal, Rheological, Wettability and Hard Machining Performance of MoS2 and CaF2 Based Minimum Quantity Hybrid Nano-Green Cutting Fluids
,”
J. Mater. Process. Technol.
,
266
(
4
), pp.
125
139
. 10.1016/j.jmatprotec.2018.10.036
19.
Koshy
,
C. P.
,
Rajendrakumar
,
P. K.
, and
Thottackkad
,
M. V.
,
2015
, “
Evaluation of the Tribological and Thermo-Physical Properties of Coconut Oil Added With MoS2 Nanoparticles at Elevated Temperatures
,”
Wear
,
330–331
(
5
), pp.
288
308
. 10.1016/j.wear.2014.12.044
20.
Satyanarayana
,
M.
, and
Muraleedharan
,
C.
,
2011
, “
Comparative Studies of Biodiesel Production From Rubber Seed Oil, Coconut Oil, and Palm Oil Including Thermogravimetric Analysis
,”
Energy Sources, Part A Recover. Util. Environ. Eff.
,
33
(
10
), pp.
925
937
. 10.1080/15567030903330637
21.
Erhan
,
I.
,
2005
,
Industrial Uses of Vegetable Oils
,
AOCS Press, United States Department of Agriculture
,
Peoria, IL
.
22.
Maqsood
,
A.
,
Amin
,
N.
,
Maqsood
,
M.
,
Shabbir
,
G.
,
Mahmood
,
A.
, and
Gustafsson
,
S. E.
,
1994
, “
Simultaneous Measurement of Thermal Conductivity and Thermal Diffusivity of Insulators, Fluids and Conductors Using Transient Plane Source (TPS) Technique
,”
Int. J. Energy Res.
,
18
(
9
), pp.
777
782
. 10.1002/er.4440180903
23.
Huang
,
L.
, and
Liu
,
L. S.
,
2009
, “
Simultaneous Determination of Thermal Conductivity and Thermal Diffusivity of Food and Agricultural Materials Using a Transient Plane-Source Method
,”
J. Food Eng.
,
95
(
1
), pp.
179
185
. 10.1016/j.jfoodeng.2009.04.024
24.
Khan
,
M. N.
,
Gustafsson
,
S. E.
, and
Karawacki
,
E.
,
2001
, “
Transient Hot-Strip Method for Simultaneously Measuring Thermal Conductivity and Thermal Diffusivity of Solids and Fluids
,”
J. Phys. D. Appl. Phys.
,
12
(
9
), pp.
1411
1421
. 10.1088/0022-3727/12/9/003
25.
Tertsinidou
,
G. J.
,
Tsolakidou
,
C. M.
,
Pantzali
,
M.
,
Assael
,
M. J.
,
Colla
,
L.
,
Fedele
,
L.
,
Bobbo
,
S.
, and
Wakeham
,
W. A.
,
2017
, “
New Measurements of the Apparent Thermal Conductivity of Nanofluids and Investigation of Their Heat Transfer Capabilities
,”
J. Chem. Eng. Data
,
62
(
1
), pp.
491
507
. 10.1021/acs.jced.6b00767
26.
Gustafsson
,
S. E.
,
1991
, “
Transient Plane Source Techniques for Thermal Conductivity and Thermal Diffusivity Measurements of Solid Materials
,”
Rev. Sci. Instrum.
,
62
(
3
), pp.
797
804
. 10.1063/1.1142087
27.
Silas Gustafsson
,
1991
,
Device for Measuring Thermal Properties of a Test Substance–the Transient Plane Source (TPS) Method
, US Patent No US5044767A, pp.
1
10
.
28.
Ai
,
Q.
,
Hu
,
Z. W.
,
Wu
,
L. L.
,
Sun
,
F. X.
, and
Xie
,
M.
,
2017
, “
A Single-Sided Method Based on Transient Plane Source Technique for Thermal Conductivity Measurement of Liquids
,”
Int. J. Heat Mass Transfer
,
109
(
6
), pp.
1181
1190
. 10.1016/j.ijheatmasstransfer.2017.03.008
29.
He
,
Y.
,
2005
, “
Rapid Thermal Conductivity Measurement With a Hot Disk Sensor: Part 1. Theoretical Considerations
,”
Thermochim. Acta
,
436
(
1–2
), pp.
122
129
. 10.1016/j.tca.2005.06.026
30.
Bohac
,
V.
,
Gustavsson
,
M. K.
,
Kubicar
,
L.
, and
Gustafsson
,
S. E.
,
2000
, “
Parameter Estimations for Measurements of Thermal Transport Properties With the Hot Disk Thermal Constants Analyzer
,”
Rev. Sci. Instrum.
,
71
(
6
), pp.
2452
2455
. 10.1063/1.1150635
31.
Mihiretie
,
B. M.
,
Cederkrantz
,
D.
,
Rosén
,
A.
,
Otterberg
,
H.
,
Sundin
,
M.
,
Gustafsson
,
S. E.
, and
Karlsteen
,
M.
,
2017
, “
Finite Element Modeling of the Hot Disc Method
,”
Int. J. Heat Mass Transfer
,
115
(
12
), pp.
216
223
. 10.1016/j.ijheatmasstransfer.2017.08.036
32.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
. 10.1080/08916159808946559
33.
Li
,
X.
,
Zou
,
C.
,
Zhou
,
L.
, and
Qi
,
A.
,
2016
, “
Experimental Study on the Thermo-Physical Properties of Diathermic Oil Based SiC Nanofluids for High Temperature Applications
,”
Int. J. Heat Mass Transfer
,
97
(
6
), pp.
631
637
. 10.1016/j.ijheatmasstransfer.2016.02.056
34.
Tawfik
,
M. M.
,
2017
, “
Experimental Studies of Nanofluid Thermal Conductivity Enhancement and Applications: A Review
,”
Renew. Sustain. Energy Rev.
,
75
(
7
), pp.
1239
1253
. 10.1016/j.rser.2016.11.111
35.
Hedayati
,
F.
,
Malvandi
,
A.
,
Kaffash
,
M. H.
, and
Ganji
,
D. D.
,
2015
, “
Fully Developed Forced Convection of Alumina/Water Nanofluid Inside Microchannels With Asymmetric Heating
,”
Powder Technol.
,
269
(
1
), pp.
520
531
. 10.1016/j.powtec.2014.09.034
36.
Asadi
,
M.
,
Asadi
,
A.
, and
Aberoumand
,
S.
,
2018
, “
An Experimental and Theoretical Investigation on the Effects of Adding Hybrid Nanoparticles on Heat Transfer Efficiency and Pumping Power of an Oil-Based Nanofluid as a Coolant Fluid
,”
Int. J. Refrig.
,
89
(
5
), pp.
83
92
. 10.1016/j.ijrefrig.2018.03.014
37.
Agarwal
,
R.
,
Verma
,
K.
,
Agrawal
,
N. K.
,
Duchaniya
,
R. K.
, and
Singh
,
R.
,
2016
, “
Synthesis, Characterization, Thermal Conductivity and Sensitivity of CuO Nanofluids
,”
Appl. Therm. Eng.
,
102
(
6
), pp.
1024
1036
. 10.1016/j.applthermaleng.2016.04.051
38.
Habibnejad-Korayem
,
M.
,
Mahmudi
,
R.
, and
Poole
,
W. J.
,
2009
, “
Enhanced Properties of Mg-Based Nano-Composites Reinforced With Al2O3 Nano-Particles
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
198
203
. 10.1016/j.msea.2009.05.001
39.
Vajjha
,
R. S.
,
Das
,
D. K.
, and
Mahagaonkar
,
B. M.
,
2009
, “
Density Measurement of Different Nanofluids and Their Comparison With Theory
,”
Pet. Sci. Technol.
,
27
(
6
), pp.
612
624
. 10.1080/10916460701857714
40.
Wang
,
L.
,
Tan
,
Z.
,
Meng
,
S.
,
Liang
,
D.
, and
Li
,
G.
,
2001
, “
Enhancement of Molar Heat Capacity of Nanostructured Al2O3
,”
J. Nanoparticle Res.
,
3
(
5/6
), pp.
483
487
. 10.1023/A:1012514216429
41.
Cabaleiro
,
D.
,
Gracia-Fernández
,
C.
,
Legido
,
J. L.
, and
Lugo
,
L.
,
2015
, “
Specific Heat of Metal Oxide Nanofluids at High Concentrations for Heat Transfer
,”
Int. J. Heat Mass Transfer
,
88
(
9
), pp.
872
879
. 10.1016/j.ijheatmasstransfer.2015.04.107
42.
Fox
,
N. J.
, and
Stachowiak
,
G. W.
,
2007
, “
Vegetable Oil-Based Lubricants—A Review of Oxidation
,”
Tribol. Int.
,
40
(
7
), pp.
1035
1046
. 10.1016/j.triboint.2006.10.001
43.
Nabeel Rashin
,
M.
, and
Hemalatha
,
J.
,
2013
, “
Viscosity Studies on Novel Copper Oxide-Coconut Oil Nanofluid
,”
Exp. Therm. Fluid Sci.
,
48
(
7
), pp.
67
72
. 10.1016/j.expthermflusci.2013.02.009
44.
Timofeeva
,
E. V.
,
Routbort
,
J. L.
, and
Singh
,
D.
,
2009
, “
Particle Shape Effects on Thermophysical Properties of Alumina Nanofluids
,”
J. Appl. Phys.
,
106
(
1
), pp.
1
10
. 10.1063/1.3155999
45.
Singh
,
D.
,
Routbort
,
J. L.
,
Yu
,
W.
,
Timofeeva
,
E.
,
Smith
D. S.
, and
France
,
D. M.
,
2016
,
Heat Transfer Fluid Containing Nano Particles
, US Patent No US9340720B2, pp.
1
34
.
46.
Halelfadl
,
S.
,
Maré
,
T.
, and
Estellé
,
P.
,
2014
, “
Efficiency of Carbon Nanotubes Water Based Nanofluids as Coolants
,”
Exp. Therm. Fluid Sci.
,
53
(
2
), pp.
104
110
. 10.1016/j.expthermflusci.2013.11.010
47.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
,
Cambridge University Press
.
48.
Akita
,
E.
, and
Yamada
,
O.
,
1980
, “
Effective Thermal Conductivity of Dispersed Materials
,”
Heat Mass Transfer
,
13
(
3
), pp.
27
37
. https://doi.org/10.1007/BF00997630
49.
Yu
,
W.
, and
Choi
,
S. U. S.
,
2003
, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
,
5
(
1/2
), pp.
167
171
. 10.1023/A:1024438603801
50.
Mintsa
,
H. A.
,
Roy
,
G.
,
Nguyen
,
C. T.
, and
Doucet
,
D.
,
2009
, “
New Temperature Dependent Thermal Conductivity Data for Water-Based Nanofluids
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
363
371
. 10.1016/j.ijthermalsci.2008.03.009
51.
Patel
,
H. E.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2010
, “
An Experimental Investigation Into the Thermal Conductivity Enhancement in Oxide and Metallic Nanofluids
,”
J. Nanoparticle Res.
,
12
(
3
), pp.
1015
1031
. 10.1007/s11051-009-9658-2
52.
Afrand
,
M.
,
2017
, “
Experimental Study on Thermal Conductivity of Ethylene Glycol Containing Hybrid Nano-Additives and Development of a New Correlation
,”
Appl. Therm. Eng.
,
110
, pp.
1111
1119
. 10.1016/j.applthermaleng.2016.09.024
53.
Esfahani
,
N. N.
,
Toghraie
,
D.
, and
Afrand
,
M.
,
2018
, “
A New Correlation for Predicting the Thermal Conductivity of ZnO–Ag (50%–50%)/Water Hybrid Nanofluid: An Experimental Study
,”
Powder Technol.
,
323
(
1
), pp.
367
373
. 10.1016/j.powtec.2017.10.025
54.
Chon
,
C. H.
,
Kihm
,
K. D.
,
Lee
,
S. P.
, and
Choi
,
S. U. S.
,
2005
, “
Empirical Correlation Finding the Role of Temperature and Particle Size for Nanofluid (Al2O3) Thermal Conductivity Enhancement
,”
Appl. Phys. Lett.
,
87
, pp.
1
3
.
55.
Keblinski
,
P.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
2002
, “
Mechanisms of Heat Flow in Suspensions of Nano Sized Particles (Nano Fluids)
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
855
863
. 10.1016/S0017-9310(01)00175-2
56.
Corcione
,
M.
,
2011
, “
Empirical Correlating Equations for Predicting the Effective Thermal Conductivity and Dynamic Viscosity of Nanofluids
,”
Energy Convers. Manag.
,
52
(
1
), pp.
789
793
. 10.1016/j.enconman.2010.06.072
You do not currently have access to this content.