Abstract

In high-power systems of proton exchange membrane fuel cells (PEMFC), cooling systems for the balance of plants (BOP) play an extremely important role in maintaining the temperature of the key components of the fuel cell system. To evaluate the effect of the PEMFC BOP cooling system on the fuel cell system efficiency, a Simulink model of the fuel cell system and an AMEsim model of the cooling system for the BOP system are established based on experimental data. A co-simulation is conducted based on the established models to determine the effects of fuel cell stack output power, coolant flowrate, radiator fan speed, and temperature control strategies on the parasitic power consumption and fuel cell system efficiency. The simulation results show that with an increase in the stack output power, coolant flowrate, and radiator fan speed, the parasitic power of the BOP cooling system increases and the system efficiency of PEMFC decreases. With an increase in the opening temperature of the radiator fan, the parasitic power of the BOP cooling system decreases and the system efficiency of the PEMFC increases. Compared with the rule-based control strategy, the radiator fan speed control strategy based on the PID controller achieves lower parasitic power. The research presented in this paper is helpful for further development of efficient fuel cell vehicle thermal management system.

References

1.
Wang
,
G.
,
Yu
,
Y.
,
Liu
,
H.
,
Gong
,
C.
,
Wen
,
S.
,
Wang
,
X.
, and
Tu
,
Z.
,
2018
, “
Progress on Design and Development of Polymer Electrolyte Membrane Fuel Cell Systems for Vehicle Applications: A Review
,”
Fuel Process. Technol.
,
179
, pp.
203
228
.
2.
Gong
,
C.
,
Shen
,
J.
,
Yu
,
Y.
,
Wang
,
K.
, and
Tu
,
Z.
,
2020
, “
A Novel Radiator Structure for Enhanced Heat Transfer Used in PEM Fuel Cell Vehicle
,”
Int. J. Heat Mass Transfer
,
157
, p.
119926
.
3.
Chen
,
X.
,
Long
,
S.
,
He
,
L.
,
Wang
,
C.
,
Chai
,
F.
,
Kong
,
X.
,
Wan
,
Z.
,
Song
,
X.
, and
Tu
,
Z.
,
2022
, “
Performance Evaluation on Thermodynamics-Economy-Environment of PEMFC Vehicle Power System Under Dynamic Condition
,”
Energy Convers. Manage.
,
269
, p.
116082
.
4.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
.
5.
Zhao
,
J.
,
Cai
,
S.
,
Huang
,
X.
,
Luo
,
X.
, and
Tu
,
Z.
,
2021
, “
4E Analysis and Multiobjective Optimization of a PEMFC-Based CCHP System With Dehumidification
,”
Energy Convers. Manage.
,
248
, p.
114789
.
6.
Xu
,
J.
,
Zhang
,
C.
,
Wan
,
Z.
,
Chen
,
X.
,
Chan
,
S. H.
, and
Tu
,
Z.
,
2022
, “
Progress and Perspectives of Integrated Thermal Management Systems in PEM Fuel Cell Vehicles: A Review
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111908
.
7.
Lasbet
,
Y.
,
Auvity
,
B.
,
Castelain
,
C.
, and
Peerhossaini
,
H.
,
2006
, “
A Chaotic Heat-Exchanger for PEMFC Cooling Applications
,”
J. Power Sources
,
156
(
1
), pp.
114
118
.
8.
Zhang
,
G.
,
Yuan
,
H.
,
Wang
,
Y.
, and
Jiao
,
K.
,
2019
, “
Three-Dimensional Simulation of a New Cooling Strategy for Proton Exchange Membrane Fuel Cell Stack Using a Non-Isothermal Multiphase Model
,”
Appl. Energy
,
255
, p.
113865
.
9.
Shen
,
J.
,
Tu
,
Z.
, and
Chan
,
S. H.
,
2020
, “
Evaluation Criterion of Different Flow Field Patterns in a Proton Exchange Membrane Fuel Cell
,”
Energy Convers. Manage.
,
213
, p.
112841
.
10.
Hu
,
D.
,
Wang
,
Y.
,
Li
,
J.
,
Yang
,
Q.
, and
Wang
,
J.
,
2021
, “
Investigation of Optimal Operating Temperature for the PEMFC and Its Tracking Control for Energy Saving in Vehicle Applications
,”
Energy Convers. Manage.
,
249
, p.
114842
.
11.
Xiao
,
B.
,
Zhao
,
J.
,
Tu
,
Z.
, and
Chan
,
S. H.
,
2021
, “
Water Distribution and Performance Variation in a Transparent PEMFC With Large Active Area
,”
Int. J. Hydrogen Energy
,
46
(
76
), pp.
38040
38050
.
12.
Hu
,
D.
,
Liu
,
J.
,
Yi
,
F.
,
Yang
,
Q.
, and
Zhou
,
J.
,
2022
, “
Enhancing Heat Dissipation to Improve Efficiency of Two-Stage Electric Air Compressor for Fuel Cell Vehicle
,”
Energy Convers. Manage.
,
251
, p.
115007
.
13.
Gong
,
Z.
,
Wang
,
B.
,
Xu
,
Y.
,
Ni
,
M.
,
Gao
,
Q.
,
Hou
,
Z.
,
Cai
,
J.
,
Gu
,
X.
,
Yuan
,
X.
, and
Jiao
,
K.
,
2022
, “
Adaptive Optimization Strategy of Air Supply for Automotive Polymer Electrolyte Membrane Fuel Cell in Life Cycle
,”
Appl. Energy
,
325
, p.
119839
.
14.
Baroutaji
,
A.
,
Arjunan
,
A.
,
Ramadan
,
M.
,
Robinson
,
J.
,
Alaswad
,
A.
,
Abdelkareem
,
M. A.
, and
Olabi
,
A. G.
,
2021
, “
Advancements and Prospects of Thermal Management and Waste Heat Recovery of PEMFC
,”
Int. J. Thermofluids
,
9
, p.
100064
.
15.
Huang
,
W.
,
Jian
,
Q.
,
Feng
,
S.
, and
Huang
,
Z.
,
2022
, “
A Hybrid Optimization Strategy of Electrical Efficiency About Cooling PEMFC Combined With Ultra-Thin Vapor Chambers
,”
Energy Convers. Manage.
,
254
, p.
115301
.
16.
Zhao
,
Q.
,
Feng
,
T.
,
Chen
,
D.
, and
Li
,
W.
,
2020
, “
Power Management for a Fuel Cell/Battery/Supercapacitor Hybrid Locomotive
,”
ASME Dynamic Systems and Control Conference
,
Online
,
Oct. 5–7
, Vol. 84287, p. V002T32A002.
17.
Xing
,
L.
,
Chang
,
H.
,
Zhu
,
R.
,
Wang
,
T.
,
Zou
,
Q.
,
Xiang
,
W.
, and
Tu
,
Z.
,
2021
, “
Thermal Analysis and Management of Proton Exchange Membrane Fuel Cell Stacks for Automotive Vehicle
,”
Int. J. Hydrogen Energy
,
46
(
64
), pp.
32665
32675
.
18.
Zhou
,
S.
,
Zhi
,
X.
, and
Yu
,
L.
,
2019
, “
Temperature Control of PEMFC Based on Optimal Power Consumption
,”
2019 Chinese Control Conference (CCC)
,
Guangzhou, China
,
July 27–30
, IEEE, pp.
6458
6463
.
19.
Wang
,
Y.
,
Li
,
J.
,
Tao
,
Q.
,
Bargal
,
M. H.
,
Yu
,
M.
,
Yuan
,
X.
, and
Su
,
C.
,
2020
, “
Thermal Management System Modeling and Simulation of a Full-Powered Fuel Cell Vehicle
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
061304
.
20.
Xu
,
J.
,
Zhang
,
C.
,
Fan
,
R.
,
Bao
,
H.
,
Wang
,
Y.
,
Huang
,
S.
,
Chin
,
C.
, and
Li
,
C.
,
2020
, “
Modelling and Control of Vehicle Integrated Thermal Management System of PEM Fuel Cell Vehicle
,”
Energy
,
199
, p.
117495
.
21.
Spiegel
,
C.
,
2011
,
PEM Fuel Cell Modeling and Simulation Using MATLAB
,
Elsevier
,
New York
, pp.
33
372
.
22.
Larminie
,
J.
,
Dicks
,
A.
, and
McDonald
,
M. S.
,
2003
,
Fuel Cell Systems Explained
,
John Wiley and Sons
,
Chichester, UK
, pp.
45
63
.
23.
Beicha
,
A.
,
2012
, “
Modeling and Simulation of Proton Exchange Membrane Fuel Cell Systems
,”
J. Power Sources
,
205
, pp.
335
339
.
24.
O'hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
,
2016
,
Fuel Cell Fundamentals
,
John Wiley and Sons
,
New York
, pp.
117
166
.
25.
Guo
,
X.
,
2018
, “
One-Dimensional Multiphase Numerical Study of Proton Exchange Membrane Fuel Cell Cold Start at Low Temperature
,”
Master’s dissertation
,
Tongji University
,
Shanghai, China
.
26.
Chugh
,
S.
,
Chaudhari
,
C.
,
Sonkar
,
K.
,
Sharma
,
A.
,
Kapur
,
G. S.
, and
Ramakumar
,
S. S. V.
,
2020
, “
Experimental and Modelling Studies of Low Temperature PEMFC Performance
,”
Int. J. Hydrogen Energy
,
45
(
15
), pp.
8866
8874
.
27.
Pukrushpan
,
J. T.
,
Stefanopoulou
,
A. G.
, and
Peng
,
H.
,
2004
,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design
,
Springer Science and Business Media
,
London
, pp.
31
56
.
28.
Pathapati
,
P. R.
,
Xue
,
X.
, and
Tang
,
J.
,
2005
, “
A New Dynamic Model for Predicting Transient Phenomena in a PEM Fuel Cell System
,”
Renewable Energy
,
30
(
1
), pp.
1
22
.
29.
Kothandaraman
,
C. P.
,
2006
,
Fundamentals of Heat and Mass Transfer
,
New Age International
,
India
, pp.
508
515
.
30.
Zhao
,
N. B.
,
Wen
,
X. Y.
, and
Li
,
S. Y.
,
2014
, “
Dynamic Time-Delay Characteristics and Structural Optimization Design of Marine Gas Turbine Intercooler
,”
Math. Probl. Eng.
,
2014
, pp.
1
14
.
31.
Duran
,
E.
,
Andujar
,
J. M.
,
Segura
,
F.
, and
Barragán
,
A. J.
,
2011
, “
A High-Flexibility DC Load for Fuel Cell and Solar Arrays Power Sources Based on DC–DC Converters
,”
Appl. Energy
,
88
(
5
), pp.
1690
1702
.
32.
Cui
,
X.
,
2021
, “
Research on Cooling and Parasitic Power Optimization of Balance of Plant System for PEMFC
,”
Master’s dissertation
,
Tongji University
,
Shanghai, China
.
33.
Li
,
D.
,
Zhang
,
C.
,
Fan
,
R.
,
Xu
,
L.
,
Wang
,
Y.
,
Guo
,
W.
,
Chen
,
J.
, and
Ni
,
M.
,
2021
, “
An Innovative Thermal Management Method for Cooling Loop of Electric Driving System for Durable and High Efficiency Electric Vehicle
,”
Appl. Therm. Eng.
,
195
, p.
117176
.
34.
Lohse-Busch
,
H.
,
Stutenberg
,
K.
,
Duoba
,
M.
,
Liu
,
X.
,
Elgowainy
,
A.
,
Wang
,
M.
,
Wallner
,
T.
,
Richard
,
B.
, and
Christenson
,
M.
,
2020
, “
Automotive Fuel Cell Stack and System Efficiency and Fuel Consumption Based on Vehicle Testing on a Chassis Dynamometer at Minus 18 C to Positive 35 C Temperatures
,”
Int. J. Hydrogen Energy
,
45
(
1
), pp.
861
872
.
35.
Xu
,
Y.
,
Fan
,
R.
,
Chang
,
G.
,
Xu
,
S.
, and
Cai
,
T.
,
2021
, “
Investigating Temperature-Driven Water Transport in Cathode Gas Diffusion Media of PEMFC With a Non-Isothermal, Two-Phase Model
,”
Energy Convers. Manage.
,
248
, p.
114791
.
36.
Khan
,
M. J.
, and
Iqbal
,
M. T.
,
2005
, “
Modelling and Analysis of Electro-Chemical, Thermal, and Reactant Flow Dynamics for a PEM Fuel Cell System
,”
Fuel Cells
,
5
(
4
), pp.
463
475
.
You do not currently have access to this content.