Abstract

Gasketed plate heat exchangers (GPHEs) are essential equipment in many industries due to their efficiency and compact design. They are particularly valued owing to their versatility, but GPHE designing and sizing are challenging due to divergences in Nusselt number and friction factor correlations. In addition to the influence of Reynolds and Prandtl numbers on the abovementioned correlations, recent studies have shown that GPHE performance is also affected by geometrical plate features, GPHE assembly accuracy quantified by the tightening distance, and inlet conditions in the branches. Despite the noticeable effort in the literature to develop more accurate GPHE correlations, no study to date has presented correlations affected by the plate thickness, tightening distance, and branches' inlet conditions (differences in the inlet pressures). Therefore, new correlations were created that filled this gap, including the influences of the chevron angle and the corrugation aspect ratio. With the aid of multiple linear regressions, the trends and large variations of our experimental databases were satisfactorily reproduced. The results have been compared to relevant literature.

References

1.
Okada
,
K.
,
Ono
,
M.
,
Tomimura
,
T.
,
Okuma
,
T.
,
Konno
,
H.
, and
Ohtani
,
S.
,
1972
, “
Design and Heat Transfer Characteristics of New Plate Heat Exchanger
,”
Heat Transfer Jpn. Res.
,
1
, pp.
90
95
.
2.
Khan
,
T. S.
,
Khan
,
M. S.
, and
Ayub
,
Z. H.
,
2015
, “
Experimental Investigation of Single-Phase Heat Transfer in a Plate Heat Exchanger
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
044501
.
3.
Yamasaki
,
A.
, and
Kawanami
,
O.
,
2024
, “
Experimental Investigation of Local Heat Transfer Coefficient in a Plate Heat Exchanger Using a Thin Heat Transfer Surface
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
2
), p.
021005-1
.
4.
Tovazhnyanski
,
L.
,
Kapustenko
,
P.
, and
Tsibulnik
,
V.
,
1980
, “
Heat Transfer and Hydraulic Resistance in Channels of Plate Heat Exchangers
,”
Energetika
,
9
(
7
), pp.
123
125
.
5.
Heavner
,
R. L.
,
Kumar
,
H.
, and
Wanniarachchi
,
A. S.
,
1993
, “
Performance of an Industrial Plate Heat Exchanger: Effect of Chevron Angle
,”
AICHE Symposium Series
,
Dec. 1993
, American Institute of Chemical Engineers, p.
262
.
6.
Martin
,
H.
,
1996
, “
A Theoretical Approach to Predict the Performance of Chevron-Type Plate Heat Exchangers
,”
Chem. Eng. Process.: Process Intensif.
,
35
(
4
), pp.
301
310
.
7.
Gaiser
,
G.
, and
Kottke
,
V.
,
1998
, “
Effects of Wavelength and Inclination Angle on the Homogeneity of Local Heat Transfer Coefficients in Plate Heat Exchangers
,”
International Heat Transfer Conference Digital Library
,
Kyongju, Korea
,
Aug. 23–28
, Begel House Inc., pp.
203
208
.
8.
Muley
,
A.
, and
Manglik
,
R. M.
,
1999
, “
Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger With Chevron Plates
,”
ASME J. Heat Mass Transfer
,
121
(
1
), pp.
110
117
.
9.
Muley
,
A.
,
Manglik
,
R. M.
, and
Metwally
,
H. M.
,
1999
, “
Enhanced Heat Transfer Characteristics of Viscous Liquid Flows in a Chevron Plate Heat Exchanger
,”
ASME J. Heat Mass Transfer
,
121
(
4
), pp.
1011
1017
.
10.
Tribbe
,
C.
, and
Müller-Steinhagen
,
H. M.
,
2001
, “
Gas/Liquid Flow in Plate-and-Frame Heat Exchangersis—Part I: Pressure Drop Measurements
,”
Heat Transfer Eng.
,
22
(
1
), pp.
5
11
.
11.
Hessami
,
M.-A.
,
2003
, “
An Experimental Investigation of the Performance of Cross-corrugated Plate Heat Exchangers
,”
J. Enhanced Heat Transfer
,
10
(
4
), pp.
379
394
.
12.
Lin
,
J. H.
,
Huang
,
C. Y.
, and
Su
,
C. C.
,
2007
, “
Dimensional Analysis for the Heat Transfer Characteristics in the Corrugated Channels of Plate Heat Exchangers
,”
Int. Commun. Heat Mass Transfer
,
34
(
3
), pp.
304
312
.
13.
Khan
,
T. S.
,
Khan
,
M. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2010
, “
Experimental Investigation of Single Phase Convective Heat Transfer Coefficient in a Corrugated Plate Heat Exchanger for Multiple Plate Configurations
,”
Appl. Therm. Eng.
,
30
(
8–9
), pp.
1058
1065
.
14.
Arsenyeva
,
O.
,
Tovazhnyanskyy
,
L.
,
Kapustenko
,
P.
, and
Demirskiy
,
O. V.
,
2014
, “
Generalised Semi-empirical Correlation for Heat Transfer in Channels of Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
70
(
2
), pp.
1208
1215
.
15.
Arsenyeva
,
O.
,
Tovazhnyanskyy
,
L.
,
Kapustenko
,
P.
, and
Demirskiy
,
O. V.
,
2012
, “
Heat Transfer and Friction Factor in Criss-cross Flow Channels of Plate-and-Frame Heat Exchangers
,”
Theor. Found. Chem. Eng.
,
46
(
6
), pp.
634
641
.
16.
Lee
,
J.
, and
Lee
,
K.-S.
,
2014
, “
Flow Characteristics and Thermal Performance in Chevron Type Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
78
, pp.
699
706
.
17.
Lee
,
J.
, and
Lee
,
K.-S.
,
2015
, “
Friction and Colburn Factor Correlations and Shape Optimization of Chevron-Type Plate Heat Exchangers
,”
Appl. Therm. Eng.
,
89
, pp.
62
69
.
18.
Tan
,
W. Q.
,
Sun
,
L.
,
Jia
,
Z.
, and
Li
,
J.
,
2018
, “
Thermal-Hydraulic Performance Analysis of Corrugated Plate Heat Exchanger
,”
Chem. Eng.
,
70
, pp.
1153
1158
.
19.
Saha
,
S. K.
, and
Khan
,
A. H.
,
2020
, “
Numerical Study on the Effect of Corrugation Angle on Thermal Performance of Cross Corrugated Plate Heat Exchangers
,”
Therm. Sci. Eng. Prog.
,
20
, p.
100711
.
20.
Zhu
,
X.
, and
Haglind
,
F.
,
2020
, “
Relationship Between Inclination Angle and Friction Factor of Chevron-Type Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
162
, p.
120370
.
21.
Li
,
W.
,
Zheng
,
B.
,
Lv
,
T.
, and
Ayub
,
Z.
,
2020
, “
A Modified Correlation for Flow Boiling Heat Transfer in Plate Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
6
), p.
061006
.
22.
Focke
,
W. W.
,
Zachariades
,
J.
, and
Olivier
,
I.
,
1985
, “
The Effect of the Corrugation Inclination Angle on the Thermohydraulic Performance of Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1469
1479
.
23.
Focke
,
W.
, and
Knibbe
,
P. G.
,
1986
, “
Flow Visualization in Parallel-Plate Ducts With Corrugated Walls
,”
J. Fluid Mech.
,
165
(
1
), pp.
73
77
.
24.
Zhang
,
G.-M.
,
Tian
,
M.-C.
, and
Zhou
,
S.-J.
,
2006
, “
Simulation and Analysis of Flow Pattern in Cross-corrugated Plate Heat Exchangers
,”
J. Hydrodyn.
,
18
(
5
), pp.
547
551
.
25.
Dović
,
D.
, and
Švaić
,
S.
,
2007
, “
Influence of Chevron Plates Geometry on Performances of Plate Heat Exchangers
,”
Tehnički Vjesnik
,
14
(
1–2
), pp.
37
45
.
26.
Sarraf
,
K.
,
Launay
,
S.
, and
Tadrist
,
L.
,
2015
, “
Complex 3D-Flow Analysis and Corrugation Angle Effect in Plate Heat Exchangers
,”
Int. J. Therm. Sci.
,
94
, pp.
126
138
.
27.
Ahn
,
J.
, and
Kim
,
H. J.
,
2016
, “
Heat Transfer and Pressure Drop of a Gasket-Sealed Plate Heat Exchanger Depending on Operating Conditions Across Hot and Cold Sides
,”
J. Mech. Sci. Technol.
,
30
(
5
), pp.
2325
2333
.
28.
Lychakov
,
V. D.
,
Balunov
,
B. F.
,
Gusew
,
S.
,
Shcheglov
,
A. A.
,
Matyash
,
A. S.
,
Starukhina
,
K. S.
, and
Zaytsev
,
A. V.
,
2017
, “
Gasketed Plate Heat Exchangers Breathing Effect
,”
J. Phys.: Conf. Ser.
,
891
, p.
012201
.
29.
Matyash
,
A. S.
,
Lychakov
,
V. D.
, and
Zakira
,
E. S.
,
2022
, “
Experimental Investigation Into the Effect of Elastic Deformation of Plates on the Friction Resistance of Plate Heat Exchangers
,”
Therm. Eng.
,
69
(
8
), pp.
596
600
.
30.
Martins
,
G. S. M.
,
Zanzi
,
M. S.
,
De Paiva
,
K. V.
,
De Oliveira
,
A. A. M.
, and
Oliveira
,
J. L. G.
,
2023
, “
Mechanical Stress Analysis of Various GPHE Corrugated Plates During the Assembly and in Working Conditions
,”
Int. J. Pressure Vessels Piping
,
206
, p.
105013
.
31.
Martins
,
G. S. M.
,
Santiago
,
R. S.
,
Beckedorff
,
L. E.
,
Possamai
,
T. S.
,
Oba
,
R.
,
Oliveira
,
J. L. G.
,
de Oliveira
,
A. A. M.
, and
Paiva
,
K. V.
,
2022
, “
Structural Analysis of Gasketed Plate Heat Exchangers
,”
Int. J. Pressure Vessels Piping
,
197
, p.
104634
.
32.
Santos
,
F.
,
Martins
,
G. S. M.
,
Strobel
,
M.
,
Beckedorff
,
L.
,
Paiva
,
K.
, and
Oliveira
,
J. L. G.
,
2024
, “
Combined Effects of Inlet Conditions and Assembly Accuracy on Nusselt and Friction Factors of Plate Heat Exchangers
,”
Int. J. Therm. Sci.
,
197
, p.
108797
.
33.
Kakaç
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2012
,
Heat Exchangers: Selection, Rating, and Thermal Design
,
CRC Press
,
Boca Raton, FL
.
34.
Bond
,
M. P.
,
1981
,
Plate Heat Exchangers for Effective Heat Transfer
,
Institution of Chemical Engineers
,
London
, pp.
162
167
.
35.
Gusew
,
S.
, and
Stuke
,
R.
,
2022
, “
Plate Heat Exchangers: Calculation of Pressure Drop for Single Phase Convection in Turbulent Flow Regime
,”
Heat Mass Transfer
,
58
(
3
), pp.
419
430
.
36.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers—I U-Type Arrangement Chem
,”
Eng. Sci.
,
39
(
4
), pp.
693
700
.
37.
Arsenyeva
,
O.
,
Tovazhnyanskyy
,
L.
,
Kapustenko
,
P.
, and
Khavin
,
G.
,
2011
, “
The Generalized Correlation for Friction Factor in Crisscross Flow Channels of Plate Heat Exchangers
,”
Chem. Eng. Trans.
,
25
, pp.
399
404
.
38.
Santos
,
F. J.
,
Beckedorff
,
L.
,
Possamai
,
T. S.
,
Paiva
,
K. V.
, and
Oliveira
,
J. L. G.
,
2025
, “
Two-Phase Flows Downstream, Upstream and Within Plate Heat Exchangers
,”
Int. J. Multiphase Flow
,
182
, p.
105062
.
39.
Arsenyeva
,
O. P.
,
Tovazhnyanski
,
L.
,
Kapustenko
,
P.
,
Klemes
,
J. J.
, and
Varbanov
,
P. S.
,
2023
, “
Review of Developments in Plate Heat Exchanger Heat Transfer Enhancement for Single-Phase Applications in Process Industries
,”
Energies
,
16
(
13
), p.
4976
.
You do not currently have access to this content.