Abstract

Poor thermal conductivity is common in batteries that use phase change material (PCM)-based thermal management systems (BTMS). This study introduces cylindrical rings and longitudinal fins to improve heat transfer. The thermal performance of several BTMS configurations is the primary focus of this analysis. The results show that the PCM–fin system offers superior temperature management compared to both pure PCM and pure battery systems. To understand the mechanisms, numerical simulations were compared against experimental data available in the literature. Numerical analysis shows that the fin shapes increase heat transmission and create a thermal conductive network inside the PCM, improving battery thermal performance. The study indicates that the effectiveness of thermal management is influenced by the number of extended surfaces and rings, as well as the heat generation rate. One cylindrical ring and eight longitudinal fins, with a dimensionless spacing of 0.2 between the battery and the ring, are recommended. The PCM–fin technology also effectively controls the battery's temperature rise at 20 W, proving its durability in high-heat conditions.

References

1.
Huo
,
Y. T.
,
Rao
,
Z. H.
,
Liu
,
X. J.
, and
Zhao
,
J. T.
,
2015
, “
Investigation of Power Battery Thermal Management by Using Mini-Channel Cold Plate
,”
Energy Convers. Manage.
,
89
(
52
), pp.
387
395
.
2.
Zhao
,
J. T.
,
Rao
,
Z. H.
, and
Li
,
Y. M.
,
2015
, “
Thermal Performance of Mini-Channel Liquid-Cooled Cylinder-Based Battery Thermal Management for Cylindrical Lithium-Ion Power Battery
,”
Energy Convers. Manage.
,
103
(
36
), pp.
157
165
.
3.
Rao
,
Z. H.
,
Qian
,
Z.
,
Kuang
,
Y.
, and
Li
,
Y. M.
,
2017
, “
Thermal Performance of Liquid Cooling-Based Thermal Management System for Cylindrical Lithium-Ion Battery Module With Variable Contact Surface
,”
Appl. Therm. Eng.
,
123
(
18
), pp.
1514
1522
.
4.
Park
,
S.
,
Jang
,
D. S.
,
Lee
,
D.
,
Hong
,
S. H.
, and
Kim
,
Y.
,
2019
, “
Simulation on Cooling Performance Characteristics of a Refrigerant-Cooled Active Thermal Management System for Lithium-Ion Batteries
,”
Int. J. Heat Mass Transfer
,
135
(
21
), pp.
131
141
.
5.
Chen
,
K.
,
Song
,
M.
,
Wei
,
W.
, and
Wang
,
S.
,
2019
, “
Design of the Structure of Battery Pack in Parallel Air-Cooled Battery Thermal Management System for Cooling Efficiency Improvement
,”
Int. J. Heat Mass Transfer
,
132
(
32
), pp.
309
321
.
6.
Jiang
,
Z. Y.
, and
Qu
,
Z. G.
,
2019
, “
Lithium–Ion Battery Thermal Management Using Heat Pipe and Phase Change Material During Discharge–Charge Cycle: A Comprehensive Numerical Study
,”
Appl. Energy
,
242
(
18
), pp.
378
392
.
7.
Al-Hallaj
,
S.
, and
Selman
,
J. R.
,
2000
, “
A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material
,”
J. Electrochem. Soc.
,
147
(
9
), pp.
3231
3236
.
8.
Ianniciello
,
L.
,
Biwolé
,
P. H.
, and
Achard
,
P.
,
2018
, “
Electric Vehicles Batteries Thermal Management Systems Employing Phase Change Materials
,”
J. Power Sources
,
378
(
10
), pp.
383
403
.
9.
Rao
,
Z.
, and
Wang
,
S.
,
2011
, “
A Review of Power Battery Thermal Energy Management
,”
Renewable Sustainable Energy Rev.
,
15
(
9
), pp.
4554
4571
.
10.
Ping
,
P.
,
Peng
,
R.
,
Kong
,
D.
,
Chen
,
G.
, and
Wen
,
J.
,
2018
, “
Investigation on Thermal Management Performance of PCM-Fin Structure for Li-Ion Battery Module in High-Temperature Environment
,”
Energy Convers. Manage.
,
176
(
5
), pp.
131
146
.
11.
Liu
,
W.
,
Liu
,
Z.
, and
Ming
,
T.
,
2009
, “
Physical Quantity Synergy in Laminar Flow Field and Its Application in Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
52
(
19–20
), pp.
4669
4672
.
12.
Liu
,
W.
,
Liu
,
Z. C.
, and
Huang
,
S. Y.
,
2010
, “
Physical Quantity Synergy in the Field of Turbulent Heat Transfer and Its Analysis for Heat Transfer Enhancement
,”
Sci. Bull.
,
55
(
23
), pp.
2589
2597
.
13.
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2015
, “
Thermal Management of a Li-Ion Battery Using Carbon Fiber-PCM Composites
,”
Appl. Therm. Eng.
,
82
(
18
), pp.
281
290
.
14.
Samimi
,
F.
,
Babapoor
,
A.
,
Azizi
,
M.
, and
Karimi
,
G.
,
2016
, “
Thermal Management Analysis of a Li-Ion Battery Cell Using Phase Change Material Loaded With Carbon Fibers
,”
Energy
,
96
(
21
), pp.
355
371
.
15.
Goli
,
P.
,
Legedza
,
S.
,
Dhar
,
A.
,
Salgado
,
R.
,
Renteria
,
J.
, and
Balandin
,
A. A.
,
2014
, “
Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries
,”
J. Power Sources
,
248
(
4
), pp.
37
43
.
16.
Zou
,
D.
,
Liu
,
X.
,
He
,
R.
,
Zhu
,
S.
,
Bao
,
J.
,
Guo
,
J.
,
Hu
,
Z.
, and
Wang
,
B.
,
2019
, “
Preparation of a Novel Composite Phase Change Material (PCM) and Its Locally Enhanced Heat Transfer for Power Battery Module
,”
Energy Convers. Manage.
,
180
(
9
), pp.
1196
1202
.
17.
Jiang
,
G.
,
Huang
,
J.
,
Fu
,
Y.
,
Cao
,
M.
, and
Liu
,
M.
,
2016
, “
Thermal Optimization of Composite Phase Change Material/Expanded Graphite for Li-Ion Battery Thermal Management
,”
Appl. Therm. Eng.
,
108
(
12
), pp.
1119
1125
.
18.
Wu
,
W.
,
Wu
,
W.
, and
Wang
,
S.
,
2017
, “
Thermal Optimization of Composite PCM-Based Large-Format Lithium-Ion Battery Modules Under Extreme Operating Conditions
,”
Energy Convers. Manage.
,
153
(
6
), pp.
22
33
.
19.
Li
,
Y.
,
Du
,
Y.
,
Xu
,
T.
,
Wu
,
H.
,
Zhou
,
X.
,
Ling
,
Z.
, and
Zhang
,
Z.
,
2018
, “
Optimization of Thermal Management System for Li-Ion Batteries Using Phase Change Material
,”
Appl. Therm. Eng.
,
131
(
10
), pp.
766
778
.
20.
Zhang
,
X.
,
Liu
,
C.
, and
Rao
,
Z.
,
2018
, “
Experimental Investigation on Thermal Management Performance of Electric Vehicle Power Battery Using Composite Phase Change Material
,”
J. Cleaner Prod.
,
201
(
18
), pp.
916
924
.
21.
ur-Rehman
,
T
,
Ali
,
H. M.
,
Janjua
,
M. M.
,
Sajjad
,
U.
, and
Yan
,
W. M.
,
2019
, “
A Critical Review on Heat Transfer Augmentation of Phase Change Materials Embedded With Porous Materials/Foams
,”
Int. J. Heat Mass Transfer
,
135
(
26
), pp.
649
673
.
22.
Ji
,
C.
,
Qin
,
Z.
,
Low
,
Z.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2018
, “
Non-Uniform Heat Transfer Suppression to Enhance PCM Melting by Angled Fins
,”
Appl. Therm. Eng.
,
129
(
15
), pp.
269
279
.
23.
Mahdi
,
J. M.
,
Lohrasbi
,
S.
,
Ganji
,
D. D.
, and
Nsofor
,
E. C.
,
2018
, “
Accelerated Melting of PCM in Energy Storage Systems via Novel Configuration of Fins in the Triplex-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
124
(
15
), pp.
663
676
.
24.
Aly
,
K. A.
,
El-Lathy
,
A. R.
, and
Fouad
,
M. A.
,
2019
, “
Enhancement of Solidification Rate of Latent Heat Thermal Energy Storage Using Corrugated Fins
,”
J. Energy Storage
,
24
(
12
), p.
100785
.
25.
Mahdi
,
J. M.
,
Lohrasbi
,
S.
,
Ganji
,
D. D.
, and
Nsofor
,
E. C.
,
2019
, “
Simultaneous Energy Storage and Recovery in the Triplex-Tube Heat Exchanger With PCM, Copper Fins and Al2O3 Nanoparticles
,”
Energy Convers. Manage.
,
180
(
5
), pp.
949
961
.
26.
Yagci
,
O. K.
,
Avci
,
M.
, and
Aydin
,
O.
,
2019
, “
Melting and Solidification of PCM in a Tube-in-Shell Unit: Effect of Fin Edge Lengths' Ratio
,”
J. Energy Storage
,
24
(
3
), p.
100802
.
27.
Ali
,
H. M.
, and
Arshad
,
A.
,
2017
, “
Experimental Investigation of n-Eicosane-Based Circular Pin-Fin Heat Sinks for Passive Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
112
(
5
), pp.
649
661
.
28.
Yazici
,
M. Y.
,
Avci
,
M.
, and
Aydin
,
O.
,
2019
, “
Combined Effects of Inclination Angle and Fin Number on Thermal Performance of a PCM-Based Heat Sink
,”
Appl. Therm. Eng.
,
159
(
5
), p.
113956
.
29.
Kalbasi
,
R.
,
Afrand
,
M.
,
Alsarraf
,
J.
, and
Tran
,
M.-D.
,
2019
, “
Studies on Optimum Fins Number in PCM-Based Heat Sinks
,”
Energy
,
171
(
3
), pp.
1088
1099
.
30.
Ashraf
,
M. J.
,
Ali
,
H. M.
,
Usman
,
H.
, and
Arshad
,
A.
,
2017
, “
Experimental Passive Electronics Cooling: Parametric Investigation of Pin-Fin Geometries and Efficient Phase Change Materials
,”
Int. J. Heat Mass Transfer
,
115
(
1
), pp.
251
263
.
31.
Arshad
,
A.
,
Ali
,
H. M.
,
Ali
,
M.
, and
Manzoor
,
S.
,
2017
, “
Thermal Performance of Phase Change Material (PCM) Based Pin-Finned Heat Sinks for Electronics Devices: Effect of Pin Thickness and PCM Volume Fraction
,”
Appl. Therm. Eng.
,
112
(
6
), pp.
143
155
.
32.
Arshad
,
A.
,
Ali
,
H. M.
,
Yan
,
W. M.
,
Hussein
,
A. K.
, and
Ahmadlouydarab
,
M.
,
2018
, “
An Experimental Study of Enhanced Heat Sinks for Thermal Management Using n-Eicosane as Phase Change Material
,”
Appl. Therm. Eng.
,
132
(
3
), pp.
52
66
.
33.
Arshad
,
A.
,
Ali
,
H. M.
,
Khushnood
,
S.
, and
Jabbal
,
M.
,
2018
, “
Experimental Investigation of PCM Based Round Pin-Fin Heat Sinks for Thermal Management of Electronics: Effect of Pin-Fin Diameter
,”
Int. J. Heat Mass Transfer
,
117
(
2
), pp.
861
872
.
34.
Ali
,
H. M.
,
Arshad
,
A.
,
Jabbal
,
M.
, and
Verdin
,
P. G.
,
2018
, “
Thermal Management of Electronics Devices With PCMs Filled Pin-Fin Heat Sinks: A Comparison
,”
Int. J. Heat Mass Transfer
,
117
(
5
), pp.
1199
1204
.
35.
Ali
,
H. M.
,
Ashraf
,
M. J.
,
Giovannelli
,
A.
,
Irfan
,
M.
,
Irshad
,
T. B.
,
Hamid
,
H. M.
,
Hassan
,
F.
, and
Arshad
,
A.
,
2018
, “
Thermal Management of Electronics: An Experimental Analysis of Triangular, Rectangular, and Circular Pin-Fin Heat Sinks for Various PCMs
,”
Int. J. Heat Mass Transfer
,
123
(
1
), pp.
272
284
.
36.
Wang
,
Z.
,
Zhang
,
H.
, and
Xia
,
X.
,
2017
, “
Experimental Investigation on the Thermal Behavior of Cylindrical Battery With Composite Paraffin and Fin Structure
,”
Int. J. Heat Mass Transfer
,
109
(
3
), pp.
958
970
.
37.
Sun
,
Z.
,
Fan
,
R.
,
Yan
,
F.
,
Zhou
,
T.
, and
Zheng
,
N.
,
2019
, “
Thermal Management of the Lithium-Ion Battery by the Composite PCM-Fin Structures
,”
Int. J. Heat Mass Transfer
,
145
(
3
), p.
118739
.
38.
Venkateswarlu
,
B.
,
Kim
,
S. C.
,
Joo
,
S. W.
, and
Chavan
,
S.
,
2024
, “
Numerical Investigation of Nanofluid as a Coolant in a Prismatic Battery for Thermal Management Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
031003
.
39.
Antonio
,
M.
,
2024
, “
Thermal Optimization Strategies for Li-Ion Batteries: Predictive Temperature Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
8
), p.
081003
.
40.
Hu
,
S.
,
Yao
,
M.
,
Zhu
,
B.
,
Zhang
,
N.
, and
Yuan
,
R.
,
2023
, “
A Microencapsulated Phase-Change Material Suspension-Based Integrated Thermal Management System for Extended Range Electric Vehicle
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
2
), p.
021005
.
41.
Liu
,
S.
,
Zhang
,
G.
, and
Wang
,
C. Y.
,
2023
, “
Challenges and Innovations of Lithium-Ion Battery Thermal Management Under Extreme Conditions: A Review
,”
ASME J. Heat Mass Transfer
,
145
(
8
), p.
080801
.
42.
Raijmakers
,
L. H. J.
,
Danilov
,
D. L.
,
Eichel
,
R. A.
, and
Notten
,
P. H. L.
,
2019
, “
A Review on Various Temperature-Indication Methods for Li-Ion Batteries
,”
Appl. Energy
,
240
(
2
), pp.
918
945
.
43.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
, et al.
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
(
1
), pp.
53
64
.
44.
Tian
,
D.
,
Liu
,
W.
,
Zhang
,
S.
, and
Liu
,
Y.
,
2021
, “
Simulation of a Set of Lithium-Ion Batteries With Composite Phase Change Materials and Heating Films Thermal Management System at Low Temperature
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
1
), p.
011002
.
45.
Kim
,
J.
,
Oh
,
J.
, and
Lee
,
H.
,
2019
, “
Review on Battery Thermal Management System for Electric Vehicles
,”
Appl. Therm. Eng.
,
149
(
4
), pp.
192
212
.
46.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.
47.
ANSYS Inc.
,
2017
,
ANSYS Fluent 18.0: Theory Guide
,
ANSYS Inc.
,
Cannonsburg, PA
.
48.
Dandotiya
,
D.
,
Joshi
,
A. K.
,
Kakati
,
P.
, and
Sudharshan
,
J.
,
2023
, “
Incorporating Copper and Carbon Nanotube Nanoparticles Into Phase Change Materials for Enhanced Thermal Management in Batteries
,”
J. Mines Met. Fuels
,
71
(
10
), pp.
1799
1808
.
49.
Khaboshan
,
H. N.
,
Jaliliantabar
,
F.
,
Abdullah
,
A. A.
, and
Panchal
,
S.
,
2023
, “
Improving the Cooling Performance of Cylindrical Lithium-Ion Battery Using Three Passive Methods in a Battery Thermal Management System
,”
Appl. Therm. Eng.
,
227
(
2
), p.
120320
.
50.
Sun
,
Z.
,
Fan
,
R.
, and
Zheng
,
N.
,
2021
, “
Thermal Management of a Simulated Battery With the Compound Use of Phase Change Material and Fins: Experimental and Numerical Investigations
,”
Int. J. Thermal Sci.
,
165
(
2
), p.
106945
.
51.
Zare
,
P.
,
Perera
,
N.
,
Lahr
,
J.
, and
Hasan
,
R.
,
2024
, “
A Novel Thermal Management System for Cylindrical Lithium-Ion Batteries Using Internal-External Fin-Enhanced Phase Change Material
,”
Appl. Therm. Eng.
,
238
(
1
), p.
121985
.
52.
Chen
,
M.
,
Yu
,
Y.
,
Ouyang
,
D.
,
Weng
,
J.
,
Zhao
,
L.
,
Wang
,
J.
, and
Chen
,
Y.
,
2024
, “
Research Progress of Enhancing Battery Safety With Phase Change Materials
,”
Renewable Sustainable Energy Rev.
,
189
(
4
), p.
113921
.
53.
Napa
,
N.
,
Agrawal
,
M. K.
, and
Tamma
,
B.
,
2024
, “
Phase Change Material Properties Identification for the Design of Efficient Thermal Management System for Cylindrical Lithium-Ion Battery Module
,”
J. Energy Storage
,
99
(
1
), p.
113241
.
54.
Guo
,
J.
,
Yang
,
B.
,
Li
,
Z.
,
Lu
,
L.
,
Yang
,
X.
, and
He
,
Y. L.
,
2024
, “
Charging Characteristics of Finned Thermal Energy Storage Tube Under Variable Rotation
,”
Appl. Therm. Eng.
,
236
(
3
), p.
121887
.
55.
Cheng
,
J.
,
Shuai
,
S.
,
Zhao
,
R.
, and
Tang
,
Z.
,
2022
, “
Numerical Analysis of Heat-Pipe-Based Battery Thermal Management System for Prismatic Lithium-Ion Batteries
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081008
.
You do not currently have access to this content.