Abstract

An experimental study is conducted to characterize the flow and thermal transport in additively manufactured lattice structures, with air and particles as convective agents. Four different lattice topologies, octet, body-centered cubic (BCC), tetrakaidecahedron (TKD), and pin fins, were additively manufactured using the binder jet additive manufacturing method with stainless steel 316L as the material. The configuration included a single column of 10 inline and interconnected unit cells in the flow direction. The unit cell inscribing different topologies was a cube of edge length 10 mm. The unit cells had a fixed design porosity of 0.88 for each topology, which resulted in different strut diameters for each topology. Due to additive manufacturing (AM)-induced irregularities, the porosities of the printed parts deviated from the intended value for each configuration. Air-based forced convection experiments were conducted for channel hydraulic diameter-based Reynolds numbers ranging from 5000 to 20,000. Flow and heat transfer results have been presented in terms of porosity-based scaled flow velocity. Particle-based forced convection experiments were conducted at a fixed particle mass flux of 47.8 kg/m2 s while maintaining a packed-bed movement of particles. In addition to conjugate heat transfer experiments, optical flow experiments were conducted to understand the behavior of moving packed bed of particles near the endwall. For air-based convection, Octet and TKD exhibited a high heat transfer coefficient, while the BCC lattice was better in terms of thermal-hydraulic performance. For particle-based convection, Octet topology yielded the highest convective heat transfer rates.

References

1.
Jost
,
E. W.
,
Moore
,
D. G.
, and
Saldana
,
C.
,
2021
, “
Evolution of Global and Local Deformation in Additively Manufactured Octet Truss Lattice Structures
,”
Addit. Manuf. Lett.
,
1
, p.
100010
.
2.
Korshunova
,
N.
,
Alaimo
,
G.
,
Hosseini
,
S. B.
,
Carraturo
,
M.
,
Reali
,
A.
,
Niiranen
,
J.
,
Auricchio
,
F.
,
Rank
,
E.
, and
Kollmannsberger
,
S.
,
2021
, “
Image-Based Numerical Characterization and Experimental Validation of Tensile Behavior of Octet-Truss Lattice Structures
,”
Addit. Manuf.
,
41
, p.
101949
.
3.
Bhat
,
C.
,
Kumar
,
A.
,
Lin
,
S.-C.
, and
Jeng
,
J.-Y.
,
2023
, “
Design, Fabrication, and Properties Evaluation of Novel Nested Lattice Structures
,”
Addit. Manuf.
,
68
, p.
103510
.
4.
Yu
,
T.
,
Li
,
X.
,
Zhao
,
M.
,
Guo
,
X.
,
Ding
,
J.
,
Qu
,
S.
,
Kwok
,
T. W. J.
,
Li
,
T.
,
Song
,
X.
, and
Chua
,
B. W.
,
2023
, “
Truss and Plate Hybrid Lattice Structures: Simulation and Experimental Investigations of Isotropy, Large-Strain Deformation, and Mechanisms
,”
Mater. Today Commun.
,
35
, p.
106344
.
5.
Aider
,
Y.
,
Kaur
,
I.
,
Mishra
,
A.
,
Li
,
L.
,
Cho
,
H.-M.
,
Martinek
,
J.
,
Ma
,
Z.
, and
Singh
,
P.
,
2023
, “
Heat Transfer Characteristics of Particle and Air Flow Through Additively Manufactured Lattice Frame Material Based on Octet-Shape Topology
,”
ASME J. Sol. Energy Eng.
,
145
(
6
), p.
061004
.
6.
Kaur
,
I.
,
Aider
,
Y.
,
Cho
,
H.
, and
Singh
,
P.
,
2024
, “
Granular Flow in Novel Octet Shape–Based Lattice Frame Material
,”
ASME J. Sol. Energy Eng.
,
146
(
3
), p.
031009
.
7.
Maurizi
,
M.
,
Gao
,
C.
, and
Berto
,
F.
,
2022
, “
Inverse Design of Truss Lattice Materials With Superior Buckling Resistance
,”
npj Comput. Mater.
,
8
(
1
), p.
247
.
8.
Flores
,
I.
,
Kretzschmar
,
N.
,
Azman
,
A. H.
,
Chekurov
,
S.
,
Pedersen
,
D. B.
, and
Chaudhuri
,
A.
,
2020
, “
Implications of Lattice Structures on Economics and Productivity of Metal Powder Bed Fusion
,”
Addit. Manuf.
,
31
, p.
100947
.
9.
Zhu
,
J.
,
Zhou
,
H.
,
Wang
,
C.
,
Zhou
,
L.
,
Yuan
,
S.
, and
Zhang
,
W.
,
2021
, “
A Review of Topology Optimization for Additive Manufacturing: Status and Challenges
,”
Chin. J. Aeronaut.
,
34
(
1
), pp.
91
110
.
10.
Umanzor
,
M.
,
Batra
,
R. C.
,
Williams
,
C. B.
, and
Druschitz
,
A.
,
2023
, “
Parametric Study on the Performance of Cast Lattice Structures Loaded at Low Strain-Rates
,”
JOM
,
75
(
6
), pp.
1
13
.
11.
van Sosin
,
B.
,
Rodin
,
D.
,
Sliusarenko
,
H.
,
Bartoň
,
M.
,
Bartoň
,
M.
, and
Elber
,
G.
,
2021
, “
The Construction of Conforming-to-Shape Truss Lattice Structures via 3D Sphere Packing
,”
Comput.-Aided Des.
,
132
, p.
102962
.
12.
Neils
,
A.
,
Dong
,
L.
, and
Wadley
,
H.
,
2022
, “
The Small-Scale Limits of Electron Beam Melt Additive Manufactured Ti–6Al–4V Octet-Truss Lattices
,”
AIP Adv.
,
12
(
9
), p.
095021
.
13.
Doutre
,
P.-T.
,
Grandvallet
,
C.
,
Gobet
,
L.
,
Vignat
,
F.
, and
Dendievel
,
R.
,
2023
,
Int. J. Adv. Manuf. Tech.
,
132
(
5
), pp.
2503
2516
.
14.
Wang
,
Z.
,
Cao
,
X.
,
Yang
,
H.
,
Du
,
X.
,
Ma
,
B.
,
Zheng
,
Q.
,
Wan
,
Z.
, and
Li
,
Y.
,
2023
, “
Additively-Manufactured 3D Truss-Lattice Materials for Enhanced Mechanical Performance and Tunable Anisotropy: Simulations & Experiments
,”
Thin-Wall. Struct.
,
183
, pp.
110439
110439
.
15.
Marutyan
,
A.
,
2022
, “
Optimization of Truss Lattices From Profile Pipes (Bent-Welded Profiles)
,”
Stroit. Meh. Rasč Sooruž.
,
302
(
3
), pp.
71
78
.
16.
Kim
,
J.
,
Jung
,
D. H.
, and
Kwon
,
Y.
,
2022
, “
Numerical Study on the Quantitative Structure-Property Relation of Lattice Truss Metals
,”
Mater. Trans.
,
63
(
10
), pp.
1317
1322
.
17.
Khan
,
M. Z.
,
Bhaskar
,
J.
, and
Kumar
,
A.
,
2023
, “
Design and Analysis of Strut-Based Lattice Structure Cranial Implant
,”
J. Mech. Eng. Sci.
,
17
(
1
), pp.
9307
9314
.
18.
Dastan
,
T.
,
Nedoushan
,
R. J.
,
Sheikhzadeh
,
M.
, and
Yu
,
W.-R.
,
2023
, “
Designs of Lattice Truss Core Sandwich Structures With Improved Compressive Strength and Stiffness
,”
J. Compos. Mater.
,
57
(
15
), pp.
2367
2387
.
19.
Lotfi
,
B.
, and
Sunden
,
B. A.
,
2023
, “
A Novel Trussed Fin-and-Elliptical Tube Heat Exchanger With Periodic Cellular Lattice Structures
,”
Int. J. Numer. Methods Heat Fluid Flow
,
33
(
3
), pp.
1076
1115
.
20.
Daynes
,
S.
, and
Feih
,
S.
,
2022
, “
Bio-Inspired Lattice Structure Optimisation With Strain Trajectory Aligned Trusses
,”
Mater. Des.
,
213
, p.
110320
.
21.
Yin
,
H.
,
Zhang
,
W.
,
Zhu
,
L.
,
Meng
,
F.
,
Liu
,
J.
, and
Wen
,
G.
,
2023
, “
Review on Lattice Structures for Energy Absorption Properties
,”
Compos. Struct.
,
304
, p.
116397
.
22.
Aider
,
Y.
,
Kaur
,
I.
,
Cho
,
H.
, and
Singh
,
P.
,
2022
, “
Periodic Heat Transfer Characteristics of Additively Manufactured Lattices
,”
Int. J. Heat Mass Transf.
,
189
, p.
122692
.
23.
Kaur
,
I.
,
Aider
,
Y.
,
Nithyanandam
,
K.
, and
Singh
,
P.
,
2022
, “
Thermal-Hydraulic Performance of Additively Manufactured Lattices for Gas Turbine Blade Trailing Edge Cooling
,”
Appl. Therm. Eng.
,
211
, p.
118461
.
24.
Kaur
,
I.
, and
Singh
,
P.
,
2022
, “
Conjugate Heat Transfer in Lattice Frame Materials Based on Novel Unit Cell Topologies
,”
Numer. Heat Transf. Part Appl.
,
82
(
12
), pp.
788
801
.
25.
Narkhede
,
S.
,
Sur
,
A.
, and
Tiwari
,
R.
,
2023
, “
The Effects of Topological Configuration and Geometric Parameters on Heat Transfer and Fluid Flow Characteristics of Lattice-Based Heat Sinks
,”
Numer. Heat Transf. Part Appl.
,
85
(
9
), pp.
1481
1500
.
26.
Downing
,
D.
,
Leary
,
M.
,
McMillan
,
M.
,
Al-Ghamdi
,
A.
, and
Brandt
,
M.
,
2020
, “
Heat Transfer in Lattice Structures During Metal Additive Manufacturing: Numerical Exploration of Temperature Field Evolution
,”
Rapid Prototyp. J.
,
26
(
5
), pp.
911
928
.
27.
Liu
,
S.
,
Jiang
,
L.
,
Chong
,
K. L.
,
Zhu
,
X.
,
Wan
,
Z.-H.
,
Verzicco
,
R.
,
Stevens
,
R. J. A. M.
,
Lohse
,
D.
, and
Sun
,
C.
,
2020
, “
From Rayleigh─Bénard Convection to Porous-Media Convection: How Porosity Affects Heat Transfer and Flow Structure
,”
J. Fluid Mech.
,
895
, p.
A18
.
28.
Fu
,
J.
,
Zhang
,
T.
,
Li
,
M.
,
Li
,
S.
,
Zhong
,
X.
, and
Liu
,
X.
,
2019
, “
Study on Flow and Heat Transfer Characteristics of Porous Media in Engine Particulate Filters Based on Lattice Boltzmann Method
,”
Energies
,
12
(
17
), p.
3319
.
29.
Kazemian
,
Y.
,
Sayyari
,
M. J.
, and
Esfahani
,
J. A.
,
2021
, “
Effects of Pore Geometry on the Natural Convective Heat Transmission in a Porous Cavity: A Lattice Boltzmann Simulation
,”
J. Therm. Anal. Calorim.
,
143
(
3
), pp.
2557
2575
.
30.
Feng
,
J.
,
Liu
,
B.
,
Lin
,
Z.
, and
Fu
,
J.
,
2021
, “
Isotropic Octet-Truss Lattice Structure Design and Anisotropy Control Strategies for Implant Application
,”
Mater. Des.
,
203
, p.
109595
.
31.
Wang
,
S.
,
Xu
,
C.
,
Liu
,
W.
, and
Liu
,
Z.
,
2019
, “
Numerical Study on Heat Transfer Performance in Packed Bed
,”
Energies
,
12
(
3
), p.
414
.
32.
Oschmann
,
T.
, and
Kruggel-Emden
,
H.
,
2017
, “
Numerical and Experimental Investigation of the Heat Transfer of Spherical Particles in a Packed Bed With an Implicit 3D Finite Difference Approach
,”
Granul. Matter
,
19
(
3
), p.
47
.
33.
Zhang
,
R.
,
Yang
,
H.
,
Lu
,
J.
, and
Wu
,
Y.
,
2013
, “
Theoretical and Experimental Analysis of Bed-to-Wall Heat Transfer in Heat Recovery Processing
,”
Powder Technol.
,
249
, pp.
186
195
.
34.
Isaza
,
P. A.
,
Warnica
,
W. D.
, and
Bussmann
,
M.
,
2015
, “
Counter-Current Parallel-Plate Moving Bed Heat Exchanger: An Analytical Solution
,”
Int. J. Heat Mass Transf.
,
87
, pp.
625
635
.
35.
Qiu
,
L.
,
Sang
,
D.
,
Feng
,
Y.
,
Huang
,
H.
, and
Zhang
,
X.
,
2020
, “
Study on Heat Transfer of Process Intensification in Moving Bed Reactor Based on the Discrete Element Method
,”
Chem. Eng. Process.—Process Intensif.
,
151
, p.
107915
.
36.
Zhang
,
J.
,
Tian
,
X.
,
Guo
,
Z.
,
Yang
,
J.
, and
Wang
,
Q.
,
2023
, “
Numerical Study of Heat Transfer for Gravity-Driven Binary Size Particle Flow Around Circular Tube
,”
Powder Technol.
,
413
, p.
118070
.
37.
Zheng
,
Y.
,
Dong
,
H.
,
Cai
,
J.
,
Feng
,
J.
,
Zhao
,
L.
,
Liu
,
J.
, and
Zhang
,
S.
,
2019
, “
Experimental Investigation of Volumetric Heat Transfer Coefficient in Vertical Moving-Bed for Sinter Waste Heat Recovery
,”
Appl. Therm. Eng.
,
151
, pp.
335
343
.
38.
Gao
,
H.
,
Liu
,
Y.
,
Zheng
,
B.
,
Sun
,
P.
,
Lu
,
M.
, and
Tian
,
G.
,
2020
, “
Fractal Heat Conduction Model of Semi-Coke Bed in Waste Heat Recovery Heat Exchanger
,”
J. Clean. Prod.
,
258
, p.
120663
.
39.
Tian
,
X.
,
Zhu
,
F.
,
Guo
,
Z.
,
Zhang
,
J.
,
Yang
,
J.
, and
Wang
,
Q.
,
2022
, “
Numerical Investigation of Gravity-Driven Particle Flow Along the Trapezoidal Corrugated Plate for a Moving Packed Bed Heat Exchanger
,”
Powder Technol.
,
405
, p.
117526
.
40.
Tian
,
X.
,
Yang
,
J.
,
Guo
,
Z.
,
Wang
,
Q.
, and
Sunden
,
B.
,
2020
, “
Numerical Study of Heat Transfer in Gravity-Driven Dense Particle Flow Around a Hexagonal Tube
,”
Powder Technol.
,
367
, pp.
285
295
.
41.
Deng
,
S.
,
Wen
,
Z.
,
Lou
,
G.
,
Zhang
,
D.
,
Su
,
F.
,
Liu
,
X.
, and
Dou
,
R.
,
2020
, “
Process of Particles Flow Across Staggered Tubes in Moving Bed
,”
Chem. Eng. Sci.
,
217
, p.
115507
.
42.
Bartsch
,
P.
, and
Zunft
,
S.
,
2019
, “
Numerical Investigation of Dense Granular Flow Around Horizontal Tubes: Qualification of CFD Model With Validated DEM Model
,”
Sol. Energy
,
182
, pp.
298
303
.
43.
Fang
,
W.
,
Chen
,
S.
,
Xu
,
J.
, and
Zeng
,
K.
,
2021
, “
Predicting Heat Transfer Coefficient of a Shell-and-Plate, Moving Packed-Bed Particle-to-sCO2 Heat Exchanger for Concentrating Solar Power
,”
Energy
,
217
, p.
119389
.
44.
Guo
,
Z.
,
Tian
,
X.
,
Tan
,
Z.
,
Yang
,
J.
,
Zhang
,
S.
, and
Wang
,
Q.
,
2021
, “
Numerical Investigation of Heat Resistances in Uniform Dense Granular Flows Along a Vertical Plate
,”
Powder Technol.
,
385
, pp.
396
408
.
45.
Ma
,
Z.
, and
Martinek
,
J.
,
2017
, “
Fluidized-Bed Heat Transfer Modeling for the Development of Particle/Supercritical-CO2 Heat Exchanger
,”
American Society of Mechanical Engineers Digital Collection
,
Charlotte, NC
,
June 26–30
,
p. V001T05A002
.
46.
Jiang
,
B.
,
Xia
,
D.
,
Guo
,
H.
,
Xiao
,
L.
,
Qu
,
H.
, and
Liu
,
X.
,
2019
, “
Efficient Waste Heat Recovery System for High-Temperature Solid Particles Based on Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
155
, pp.
166
174
.
47.
Wilson
,
G.
,
Sahoo
,
S.
,
Sabharwal
,
P.
,
Bindra
,
H.
,
Bindra
,
H.
, and
Revankar
,
S.
,
2019
, “Chapter Seven—Packed Bed Thermal Storage for LWRs,”
Storage and Hybridization of Nuclear Energy
,
H.
Bindra
and
S.
Revankar
, eds.,
Elsevier Academic Press
, pp.
229
248
.
48.
Díaz-Heras
,
M.
,
Calderón
,
A.
,
Navarro
,
M.
,
Almendros-Ibáñez
,
J. A.
,
Fernández
,
A. I.
, and
Barreneche
,
C.
,
2021
, “
Characterization and Testing of Solid Particles to Be Used in CSP Plants: Aging and Fluidization Tests
,”
Sol. Energy Mater. Sol. Cells
,
219
, p.
110793
.
49.
Dai
,
Y. L.
,
Liu
,
X. J.
, and
Xia
,
D.
,
2020
, “
Flow Characteristics of Three Typical Granular Materials in Near 2D Moving Beds
,”
Powder Technol.
,
373
, pp.
220
231
.
50.
Bartsch
,
P.
, and
Zunft
,
S.
,
2019
, “
Granular Flow Around the Horizontal Tubes of a Particle Heat Exchanger: DEM-Simulation and Experimental Validation
,”
Sol. Energy
,
182
, pp.
48
56
.
51.
Qiu
,
L.
,
Sang
,
D.
,
Feng
,
Y.
, and
Zhang
,
X.
,
2020
, “
Experimental Study on Particle Flow Characteristics of Three-Dimensional Moving Bed
,”
Powder Technol.
,
374
, pp.
399
408
.
52.
Niegsch
,
J.
,
Köneke
,
D.
, and
Weinspach
,
P.-M.
,
1994
, “
Heat Transfer and Flow of Bulk Solids in a Moving Bed
,”
Chem. Eng. Process. Process Intensif.
,
33
(
2
), pp.
73
89
.
53.
Tan
,
Z.
,
Guo
,
Z.
,
Yang
,
J.
, and
Wang
,
Q.
,
2019
, “
Numerical Investigation of Heat Transfer for Elliptical Tube in Granular Flow Using DEM
,”
Energy Procedia
,
158
, pp.
5504
5509
.
54.
Baumann
,
T.
, and
Zunft
,
S.
,
2015
, “
Development and Performance Assessment of a Moving Bed Heat Exchanger for Solar Central Receiver Power Plants
,”
Energy Procedia
,
69
, pp.
748
757
.
55.
Jiang
,
B.
,
Xia
,
D.
,
Zhang
,
H.
,
Pei
,
H.
, and
Liu
,
X.
,
2020
, “
Effective Waste Heat Recovery From Industrial High-Temperature Granules: A Moving Bed Indirect Heat Exchanger With Embedded Agitation
,”
Energy
,
208
, p.
118346
.
56.
Guo
,
Z.
,
Zhang
,
S.
,
Tian
,
X.
,
Yang
,
J.
, and
Wang
,
Q.
,
2020
, “
Numerical Investigation of Tube Oscillation in Gravity-Driven Granular Flow With Heat Transfer by Discrete Element Method
,”
Energy
,
207
, p.
118203
.
57.
Farnebäck
,
G.
,
2003
, “Two-Frame Motion Estimation Based on Polynomial Expansion,”
Image Analysis
,
J.
Bigun
, and
T.
Gustavsson
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
363
370
.
58.
Bradski
,
G.
,
2000
, “
The Opencv Library
,”
Dr Dobbs J. Softw. Tools Prof. Program.
,
25
(
11
), pp.
120
123
.
59.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
60.
Liang
,
D.
,
Chen
,
W.
,
Ju
,
Y.
, and
Chyu
,
M. K.
,
2021
, “
Comparing Endwall Heat Transfer Among Staggered Pin Fin, Kagome and Body Centered Cubic Arrays
,”
Appl. Therm. Eng.
,
185
, p.
116306
.
61.
Corbett
,
T. M.
, and
Thole
,
K. A.
,
2024
, “
Large Eddy Simulations of Kagome and Body Centered Cubic Lattice Cells
,”
Int. J. Heat Mass Transf.
,
218
, p.
124808
.
62.
Firatoglu
,
Z. A.
,
Yemenici
,
O.
, and
Umur
,
H.
,
2021
, “
Experimental and Numerical Investigation of the Effect of Horseshoe Vortex Legs on Heat Characteristics of the Downstream Region of a Circular Cylinder-Wall Junction
,”
Int. J. Heat Mass Transf.
,
180
, p.
121726
.
63.
Tian
,
C.
,
Jiang
,
F.
,
Pettersen
,
B.
, and
Andersson
,
H. I.
,
2021
, “
Vortex System Around a Step Cylinder in a Turbulent Flow Field
,”
Phys. Fluids
,
33
(
4
), p.
045112
.
64.
Khan
,
B. A.
, and
Saha
,
A. K.
,
2021
, “
Direct Numerical Simulation of Turbulent Flow and Heat Transfer Over a Heated Cube Placed in a Matrix of Unheated Cubes
,”
Int. J. Heat Mass Transf.
,
171
, p.
121052
.
65.
Karmakar
,
A.
, and
Saha
,
A. K.
,
2020
, “
Unsteady Flow Past a Square Cylinder Placed Close to a Free Surface
,”
Phys. Fluids
,
32
(
12
), p.
123610
.
66.
Kaur
,
I.
, and
Singh
,
P.
,
2020
, “
Flow and Thermal Transport Through Unit Cell Topologies of Cubic and Octahedron Families
,”
Int. J. Heat Mass Transf.
,
158
, p.
119784
.
67.
Mancin
,
S.
,
Zilio
,
C.
,
Cavallini
,
A.
, and
Rossetto
,
L.
,
2010
, “
Heat Transfer During Air Flow in Aluminum Foams
,”
Int. J. Heat Mass Transf.
,
53
(
21
), pp.
4976
4984
.
68.
Kaur
,
I.
, and
Singh
,
P.
,
2023
, “
Effects of Inherent Surface Roughness of Additively Manufactured Lattice Frame Material on Flow and Thermal Transport
,”
Int. J. Heat Mass Transf.
,
209
, p.
124077
.
69.
Kaur
,
I.
, and
Singh
,
P.
,
2021
, “
Endwall Heat Transfer Characteristics of Octahedron Family Lattice-Frame Materials
,”
Int. Commun. Heat Mass Transf.
,
127
, p.
105522
.
You do not currently have access to this content.