Abstract

Solar heat exchangers have the potential for sustainable energy utilization and unique properties like being cost-effective, transferring heat more efficiently, and being eco-friendly. However, the thermal performance of heat exchangers is reduced due to poor weather conditions, unrated solar radiation, and a lack of latent heat energy storage. This study aims to resolve disputes and enhance the solar thermal performance of flat plate solar collectors that utilize beeswax phase change material (PCM) and a hybrid nanofluid composed of 50% zinc oxide (ZnO) and 50% magnesium oxide (MgO) at concentrations of 1–3 vol%, operated at a flowrate of 2 l/min. The different volume concentrations include hybrid nanofluid (ZnO/MgO) at 1 vol%, PCM mixed with hybrid nanofluid (ZnO/MgO) at 2 vol%, and PCM combined with hybrid nanofluid (ZnO/MgO) at 3 vol%. The use of the hybrid nanofluid results in an improved heat transfer rate, reduced heat loss, greater latent heat storage, and enhanced thermal and exergy efficiency compared to water. Specifically, the ZnO/MgO at a concentration of 3 vol% exhibits the highest thermal conductivity, reaching approximately 0.93 W/m/K. It also achieves an outlet temperature of 91.5 °C, a heat transfer rate of around 398.4 W, and a latent heat storage capacity of about 389.1 kJ/kg. Additionally, the typical thermal efficiency is approximately 68.6%, while the average exergy efficiency is about 30.1%.

References

1.
Rahman
,
M. S.
,
Karim
,
M. R.
, and
Ehsan
,
M. M.
,
2023
, “
Solar Energy Harvesting From Evacuated Flat Plate Collector: Design, Thermo-Economic Analysis, and Off Design Performance
,”
Results Eng.
,
20
, p.
101461
.
2.
Zheng
,
J.
,
Febrer
,
R.
,
Castro
,
J.
,
Kizildag
,
D.
, and
Rigola
,
J.
,
2024
, “
A New High-Performance Flat Plate Solar Collector Numerical Modelling and Experimental Validation
,”
Appl. Energy
,
355
, p.
122221
.
3.
Vahidhosseini
,
S. M.
,
Rashidi
,
S.
,
Hsu
,
S.
,
Yan
,
W.
, and
Rashidi
,
A.
,
2024
, “
Integration of Solar Thermal Collectors and Heat Pumps With Thermal Energy Storage Systems for Building Energy Demand Reduction: A Comprehensive Review
,”
J. Energy Storage
,
95
, p.
112568
.
4.
Pathak
,
S. K.
,
Tazmeen
,
T.
,
Chopra
,
K.
,
Tyagi
,
V. V.
,
Anand
,
S.
,
Abdulateef
,
A. M.
, and
Pandey
,
A. K.
,
2023
, “
Sustainable Energy Progress Via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review
,”
Sustainability
,
15
(
8
), p.
13749
.
5.
Togun
,
H.
,
Sultan
,
H. S.
,
Mohammed
,
H. I.
,
Sadeq
,
A. M.
,
Biswas
,
N.
,
Hasan
,
H. A.
,
Homod
,
R. Z.
,
Abdulkadhim
,
A. H.
,
Yaseen
,
Z. M.
, and
Talebizadehsardari
,
P.
,
2024
, “
A Critical Review on Phase Change Materials (PCM) Based Heat Exchanger: Different Hybrid Techniques for the Enhancement
,”
J. Energy Storage
,
79
, p.
109840
.
6.
Abdulmunem
,
A. R.
,
Mazali
,
I. I.
,
Samin
,
P. M.
, and
Sopian
,
K.
,
2024
, “
Beeswax as a Sustainable Thermal Energy Storage Material: Experimental Thermal Assessment in Solar Air Heater
,”
J. Energy Storage
,
103
(
Part B
), p.
114398
.
7.
Sharma
,
A. K.
, and
Gupta
,
B.
,
2024
, “
Performance Enhancement of Flat Plate Solar Collector System With Eutectic Form Phase Change Material
,”
J. Energy Storage
,
97
(
Part A
), p.
112770
.
8.
Medjahed
,
B.
,
Dardouri
,
S.
,
Goual
,
O. E.
,
Yüksel
,
A.
,
Arıcı
,
M.
, and
Chaib
,
S.
,
2024
, “
Experimental Analysis of the Thermal Performance of Beeswax-Heat Exchanger as Latent Heat Thermal Energy Storage System
,”
J. Energy Storage
,
101
(
Part B
), p.
113898
.
9.
Tripathi
,
R. J.
, and
Kumar
,
D.
,
2024
, “
Prediction and Optimization of Wet Bulb Efficiency in Solar Energy-Based Novel Evaporative Cooling System: Response Surface Method Approach
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121005
.
10.
Said
,
Z.
,
Arora
,
S.
,
Farooq
,
L. S.
,
Li
,
C.
, and
Allouhi
,
A.
,
2022
, “
Recent Advances on Improved Optical, Thermal, and Radiative Characteristics of Plasmonic Nanofluids: Academic Insights and Perspectives
,”
Sol. Energy Mater. Sol. Cells
,
236
, p.
111504
.
11.
Nayak
,
S.
,
Hassan
,
M. A.
, and
Paswan
,
M.
,
2024
, “
Thermo-Fluid Characteristics of a Flat-Plate Collector With Different Riser Tube Configurations Employing ZnO/Water Nanofluids: An Experimental and Numerical Analysis
,”
Arabian J. Sci. Eng.
,
10
, pp.
1
15
.
12.
Ashour
,
A. F.
,
El-Awady
,
A. T.
, and
Tawfik
,
M. A.
,
2022
, “
Numerical Investigation on the Thermal Performance of a Flat Plate Solar Collector Using ZnO & CuO Water Nanofluids Under Egyptian Weathering Conditions
,”
Energy
,
240
, p.
122743
.
13.
Poyyamozhi
,
N.
,
Muthukannan
,
M.
,
Elangovan
,
K.
,
Saranya
,
A.
, and
Chandrakumar
,
P.
,
2024
, “
Optimizing Hybrid Solar Collector Efficiency With MgO/CNT Nanofluid: A Response Surface Methodology Investigation
,”
Interactions
,
245
(
1
), p.
192
.
14.
Aytaç
,
I.
,
Tuncer
,
A. D.
,
Khanlari
,
A.
,
Variyenli
,
H. I.
,
Mantıcı
,
S.
,
Güngör
,
L.
, and
Ünvar
,
S.
, “
Investigating the Effects of Using MgO-CuO/Water Hybrid Nanofluid in an Evacuated Solar Water Collector: A Comprehensive Survey
,”
Therm. Sci. Eng. Prog.
,
39
, p.
101688
.
15.
Henein
,
S. M.
, and
Rehim
,
A. A. A.
,
2022
, “
The Performance Response of a Heat Pipe Evacuated Tube Solar Collector Using MgO/MWCNT Hybrid Nanofluid as a Working Fluid
,”
Case Stud. Therm. Eng.
,
33
, p.
101957
.
16.
Rangabashiam
,
D.
,
Ramachandran
,
S.
, and
Sekar
,
M.
,
2023
, “
Effect of Al2O3 and MgO Nanofluids in Heat Pipe Solar Collector for Improved Efficiency
,”
Appl. Nanosci.
,
13
(
1
), pp.
595
604
.
17.
Kolahkaj
,
S.
,
Moravej
,
M.
, and
Ghafouri
,
A.
,
2024
, “
Thermal Performance of a Flat-Plate Solar Collector Using Elliptical Riser Tubes and Magnesium Oxide Nanofluid
,”
Int. J. Ambient Energy
,
45
(
1
), p.
2323642
.
18.
Arulprakasajothi
,
M.
,
Poyyamozhi
,
N.
,
Saranya
,
A.
,
Vellaiyan
,
S.
, and
Elangovan
,
K.
,
2024
, “
Enhancing the Performance of Photovoltaic–Thermal Collector Using CNT-Infused MgO Nanofluids and Natural Additive
,”
J. Therm. Anal. Calorim.
,
149
(
17
), pp.
9777
9790
.
19.
Maruthai
,
J.
,
Muthukumarasamy
,
A.
, and
Baskaran
,
B.
,
2018
, “
Optical, Biological and Catalytic Properties of ZnO/MgO Nanocomposites Derived Via Musa Paradisiaca Bract Extract
,”
Ceram. Int.
,
44
(
11
), pp.
13152
13160
.
20.
Vivekanandan
,
M.
,
Premalatha
,
M.
, and
Vijayan
,
V.
,
2023
, “
Hydrodynamic Studies of CFBC Boiler With Three Types of Air Distributor Nozzles: Experimental and CFD Analysis
,”
J. Therm. Anal. Calorim.
,
148
(
2
), pp.
405
415
.
21.
Choudhary
,
S.
,
Kumar
,
V.
, and
Singhal
,
V.
,
2024
, “
Thermal Performance and Economic Sustainability of Flat Plate Solar Collectors Using MgO And ZnO Nanofluids: A Comparative Analysis
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
238
(
2
), pp.
305
321
.
22.
Abdulhamid
,
M. I.
,
Aboul-Enein
,
S.
, and
Ibrahim
,
A.
,
2024
, “
MgO and ZnO Nanofluids Passive Cooling Effects on the Electricity Production of Photovoltaic Panels: A Comparative Study
,”
Eur. Phys. J. Plus
,
139
(
10
), p.
864
.
23.
Loyte
,
A.
,
Yuvarajan
,
D.
,
Thandavamoorthy
,
R.
, and
Ravikumar
,
J.
,
2023
, “
Assessment of Metro-Induced Vibrations on Photovoltaic Modules for Their Solar Energy Degradation Potential
,”
Sol. Energy
,
255
, pp.
257
273
.
24.
Sathish
,
T.
,
2020
, “
Experimental Investigation on Degradation of Heat Transfer Properties of a Black Chromium-Coated Aluminium Surface Solar Collector Tube
,”
Int. J. Ambient. Energy
,
41
(
7
), pp.
754
758
.
25.
Liu
,
Y.
,
Tan
,
C.
,
Jin
,
J.
, and
Ma
,
S.
,
2022
, “
Heat Collection Performance Analysis of Corrugated Flat Plate Collector: An Experimental Study
,”
Renewable Energy
,
181
, pp.
1
9
.
26.
Selvam
,
L.
,
Hossain
,
I.
,
Aruna
,
M.
,
Karthigairajan
,
M.
,
Prabagaran
,
S.
,
Mohanavel
,
V.
,
Seikh
,
A. H.
, and
Kalam
,
M. A.
,
2024
, “
Enhancement and Characteristics Study of Parabolic Trough Solar Collector by Using Magnesium Oxide Coating on Solar Tube
,”
J. Therm. Anal. Calorim.
,
149
(
21
), pp.
12001
12010
.
27.
Desisa
,
T. R.
,
2023
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics in Solar Flat Plate Collector Using Nanofluids
,”
Int. J. Thermofluids
,
18
, p.
100325
.
28.
Logesh
,
K.
,
Kumar
,
R.
,
Singh
,
S.
,
Singh
,
P. K.
,
Vijay
,
S. N. S. M.
,
Soudagar
,
M. E. M.
,
Alharbi
,
S. A.
, and
Obaid
,
S. A.
,
2025
, “
Thermal and Exergy Analysis of Solar Air Heater Enhanced With Sodium Carbonate Decahydrate and Magnesium Sulfate Heptahydrate PCM: Performance Evaluation
,”
Appl. Them. Eng.
,
258
(
Part A
), p.
124556
.
29.
Paul
,
U. K.
,
Mohtasim
,
M. S.
,
Kibria
,
M. G.
, and
Das
,
B. K.
,
2024
, “
Nano-Material Based Composite Phase Change Materials and Nanofluid for Solar Thermal Energy Storage Applications: Featuring Numerical and Experimental Approaches
,”
J. Energy Storage
,
98
(
Part B
), p.
113032
.
30.
Koholé
,
Y. W.
,
Fohagui
,
F. C. V.
, and
Tchuen
,
G.
,
2022
, “
Flat-Plate Solar Collector Thermal Performance Assessment Via Energy, Exergy and Irreversibility Analysis
,”
Energy Convers. Manage.
,
15
, p.
100247
.
31.
Mohanavel
,
V.
,
Logesh
,
K.
,
Sharma
,
P.
,
Hossain
,
I.
,
Soudagar
,
M. E. M.
,
Alharbi
,
S. A.
,
Obaid
,
S. A.
, and
Ramachandaramurthy
,
V. K.
,
2024
, “
Silicon Porous Disc Featured Parabolic Trough Collector Functioned With Paraffin: Thermal Performance Study
,”
Appl. Them. Eng.
,
257
(
Part B
), p.
124392
.
32.
Herrera
,
P. A.
,
Marazuela
,
M. A.
, and
Hofmann
,
T.
,
2022
, “
Parameter Estimation and Uncertainty Analysis in Hydrological Modeling
,”
Wiley Interdiscip. Rev.: Water
,
9
(
1
), p.
e1569
.
33.
Bhore
,
C. V.
,
Andhare
,
A. B.
,
Padole
,
P. M.
,
Loyte
,
A.
,
Vincent
,
J. S.
,
Devarajan
,
Y.
, and
Vellaiyan
,
S.
,
2022
, “
Experimental Investigation on Minimizing Degradation of Solar Energy Generation for Photovoltaic Module by Modified Damping System
,”
Sol. Energy
,
250
, pp.
194
208
.
34.
Ali
,
A. A.
,
Fadaly
,
E. A. E.
, and
Deraz
,
N. M.
,
2021
, “
Auto-Combustion Fabrication, Structural, Morphological and Photocatalytic Activity of CuO/ZnO/MgO Nanocomposites
,”
Mater. Chem. Phys.
,
270
, p.
124762
.
35.
Zamora
,
B.
,
2023
, “
Enhancing the Performance of a Rooftop Solar Chimney Through Flow Disturbers
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
12
), p.
121010
.
36.
Mahmoud
,
M. E.
,
Khalifa
,
M. A.
,
Youssef
,
M. R.
, and
Sharkawy
,
R. M. E.
,
2022
, “
Influence of MgO and ZnO as Nano-Additives on the Mechanical, Microstructural and Thermal Performance of High-Density Polyethylene
,”
J. Appl. Poly. Sci.
,
139
(
31
), p.
e52705
.
37.
Gamal
,
M.
,
Radwan
,
M. S.
,
Elgizawy
,
I. G.
, and
Shedid
,
M. H.
,
2023
, “
Thermophysical Characterization on Water and Ethylene Glycol/Water-Based MgO and ZnO Nanofluids at Elevated Temperatures: An Experimental Investigation
,”
J. Mol. Liq.
,
369
, p.
120867
.
38.
Bairagi
,
S.
,
Roy
,
R.
, and
Mandal
,
B. K.
,
2023
, “
Heat Transfer Enhancement in Laminar Pipe Flow Using Al2O3–Water Nanofluid and Twisted Tape Inserts
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
8
), p.
081003
.
39.
Nwaokocha
,
C.
,
Momin
,
M.
,
Giwa
,
S.
,
Sharifpur
,
M.
,
Murshed
,
S. M. S.
, and
Meyer
,
J. P.
,
2022
, “
Experimental Investigation of Thermo-Convection Behaviour of Aqueous Binary Nanofluids of MgO-ZnO in a Square Cavity
,”
Ther. Sci. Eng. Progress
,
28
, p.
101057
.
40.
Swamy
,
K. A.
, and
Verma
,
S.
,
2024
, “
Experimental and Numerical Investigation for Optimization of a Hybrid Battery Thermal Management System Based on Phase Change Material and Air Convection
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
12
), p.
121004
.
You do not currently have access to this content.