Microchannel heat transfer is commonly applied in the thermal management of high-power electronics. Most designs involve a series of parallel microchannels, which are typically analyzed by assuming a uniform flow distribution. However, many devices have a nonuniform thermal distribution, with hot spots producing much higher heat fluxes and temperatures than the baseline. Although solutions have been developed to improve local heat transfer, these are advanced methods using embedded cooling devices. As an alternative, a passive solution is developed here using analytical methods to optimize the channel geometry for a desired, nonuniform flow distribution. This results in a simple power law for the passage diameter, which may be useful for many microfluidic systems, including electronics cooling devices. Computational simulations are then applied to demonstrate the effectiveness of the power law for laminar conditions. At low Reynolds numbers, the flow distribution can be controlled to good accuracy, matching the desired distribution to within less than 1%. Further simulations consider the control of hot spots in laminar developing flow. Under these circumstances, temperatures can be made uniform to within 2 °C over a range of Reynolds numbers (60 to 300), demonstrating the capability of this power law solution.

References

1.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.10.1109/JPROC.2006.879800
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heatsinking for VLSI
,”
IEEE Electron. Dev. Lett.
,
2
, pp.
126
129
.10.1109/EDL.1981.25367
3.
Prasher
,
R. S.
,
Dimer
,
J.
,
Chang
,
J.-Y.
,
Myers
,
A.
,
Chau
,
D.
,
Prstic
,
S.
, and
He
,
D.
,
2005
, “
Effect of Localized Hotspot on the Thermal Performance of Two-Phase Microchannel Heat Exchanger
,”
Proceedings of the 2005 InterPACK Conference
,
San Francisco, CA
, July 17–22, Paper #IPACK2005-73087, pp.
99
103
.
4.
Kercher
,
D. S.
,
Lee
,
J.-B.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE T. Compon. Pack. T.
,
26
(
2
), pp.
359
366
.10.1109/TCAPT.2003.815116
5.
Snyder
,
G. J.
,
Solo
,
M.
,
Alley
,
R.
,
Koester
,
D.
, and
Conner
,
B.
,
2006
, “
Hot Spot Cooling Using Embedded Thermoelectric Coolers
,”
Proceedings of the 2006 SemiTherm Symposium
,
Dallas, TX
, March 14–16, pp.
135
143
.
6.
Bar-Cohen
,
A.
,
2009
, “
Thermal Management of On-Chip Hot Spots and 3D Chip Stacks
,”
Proceedings of the 2009 IEEE COMCAS Conference
,
Tel Aviv, Israel
, November 9–11, pp.
1
8
.
7.
Webb
,
R. L.
,
2003
, “
Effect of Manifold Design on Flow Distribution in Parallel Micro-Channels
,”
Proceedings of the 2003 InterPACK Conference
,
Maui, HI
, July 6–11, pp.
527
535
.
8.
Li
,
P.
,
Martin
,
C. M.
,
Yeung
,
K. K.
, and
Xue
,
W.
,
2011
, “
Dielectrophoresis Aligned Single Walled Carbon Nanotubes as pH Sensors
,”
Biosensors
,
1
, pp.
23
35
.10.3390/bios1010023
9.
Liu
,
H.
,
Li
,
P. W.
, and
Van Lew
,
J.
,
2010
, “
CFD Study of Flow Uniformity in Fuel Distributors Having Multiple Structural Bifurcations of Flow Channels
,”
Int. J. Hydro. Energ.
,
35
, pp.
9186
9198
.10.1016/j.ijhydene.2010.06.043
10.
Pan
,
M.
,
Wei
,
X.
,
Zeng
,
D.
, and
Tang
,
Y.
,
2010
, “
Trend Prediction in Velocity Distribution Among Microchannels Based on the Analysis of Frictional Resistances
,”
Chem. Eng. J.
,
164
, pp.
238
245
.10.1016/j.cej.2010.08.024
11.
Bajura
,
R. A.
, and
Jones
,
E. H.
,
1976
, “
Flow Distribution Manifolds
,”
ASME J. Fluid Eng.
,
98
(
4
), pp.
654
665
.10.1115/1.3448441
12.
Shah
,
R. K.
,
1985
,
Handbook of Heat Transfer Applications
,
W. M
.
Rohsenow
,
J. P.
Hartnett
, and
E. N.
Ganic
, eds.,
McGraw-Hill
,
New York
, pp.
266
279
.
13.
Murray
,
C. D.
,
1926
, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. USA
,
12
(
3
), pp.
207
214
.10.1073/pnas.12.3.207
14.
Emerson
,
D. R.
,
Cieslicki
,
K.
,
Gu
,
X.
, and
Barber
,
R. W.
,
2006
, “
Biomimetic Design of Microfluidic Manifolds Based on a Generalized Murray's Law
,”
Lab Chip
,
6
(
3
), pp.
447
454
.10.1039/b516975e
15.
Liu
,
S.
,
Zhang
,
Y.
, and
Liu
,
P.
,
2007
, “
Heat Transfer and Pressure Drop in Fractal Microchannel Heat Sink for Cooling of Electronic Chips
,”
Heat Mass Trans.
,
44
(
2
), pp.
221
227
.10.1007/s00231-007-0240-0
16.
Commenge
,
J. M.
,
Falk.
L.
,
Corriou
,
J. P.
, and
Matlosz
,
M.
,
2002
, “
Optimal Design for Flow Uniformity in Microchannel Reactors
,”
AIChE J.
,
48
, pp.
345
358
.10.1002/aic.690480218
17.
Oh
,
K. W.
,
Lee
,
K.
,
Ahn
,
B.
, and
Furlani
,
E. P.
,
2012
, “
Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy
,”
Lab Chip
,
12
(
3
), pp.
515
545
.10.1039/c2lc20799k
18.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluid. Eng.
,
133
(
5
), p.
051103
.10.1115/1.4004089
19.
Mohammadi
,
M.
,
Jovanovic
,
G.
, and
Sharp
,
K.
,
2012
, “
Numerical Study of Flow Uniformity and Pressure Characteristics Within a Microchannel Array With Triangular Manifolds
,”
Comput. Chem. Eng.
,
52
, pp.
134
144
.10.1016/j.compchemeng.2012.12.010
20.
Solovitz
,
S. A.
,
Zhao
,
J.
,
Xue
,
W.
, and
Xu
,
J.
,
2012
, “
Uniform Flow Control for a Multi-Passage Microfluidic Sensor
,”
ASME J. Fluid. Eng.
,
135
(
2
), p.
021101
.10.1115/1.4023444
21.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Advances in Heat Transfer, Supplement
,
Academic
,
New York
, p.
86
.
22.
Incropera
,
F. P.
, and
DeWitt
,
D. W.
,
1990
,
Introduction to Heat Transfer
, 2nd ed.,
John Wiley & Sons
,
New York
, pp.
427
468
.
23.
Shah
,
R. K.
,
1978
, “
A Correlation for Laminar Hydrodynamic Entry Length Solutions for Circular and Noncircular Ducts
,”
ASME J. Fluid. Eng.
,
100
, pp.
177
179
.10.1115/1.3448626
24.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw-Hill
,
New York
, pp.
244
249
.
25.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
, pp.
126
131
.
26.
Knight
,
R. W.
,
Hall
,
D. J.
,
Goodling
,
J. S.
, and
Jaeger
,
R. C.
,
1992
, “
Heatsink Optimization With Application to Microchannels
,”
IEEE T. Compon. Hybr.
,
15
, pp.
832
842
.10.1109/33.180049
You do not currently have access to this content.