Abstract

We report the dynamics and heat transfer characteristics of water droplets impacting a thin stainless-steel foil maintained at different temperatures. The hydrophobic characteristics are imparted to the surface through polysiloxane coating, and water droplets impact the uncoated and coated heated surfaces at different velocities. High-speed videography is utilized to capture the dynamics of the droplet upon impact, while the temperature field of the substrate, during the phenomenon, is simultaneously recorded using high-speed infrared thermography. Heat transfer to the droplet over different surfaces is determined through energy balance on the foil using the captured thermographs. The results reveal that the spreading phase duration is independent of droplet impact velocity, irrespective of surface wettability, whereas surface wettability primarily affects the receding phase. The coated hydrophobic surfaces exhibited lower resistance to motion at the three-phase contact line, resulting in reduced spread ratios during the receding phase. It is noted that the majority of heat transfer occurred during the initial spreading and receding phases, driven primarily by forced convection. The maximum heat fluxes were observed along the three-phase contact line, particularly at the onset of the receding phase. The coated surface demonstrated lower overall heat transfer rates compared to non-coated surfaces, with the difference increasing at higher surface temperatures. Additionally, an increase in surface temperature to 75 °C enhanced the hydrophobicity of the coated surface, leading to prolonged receding phases and extended time to reach the sessile state.

References

1.
Cheng
,
J.-T.
, and
Chen
,
C.-L.
,
2010
, “
Adaptive Chip Cooling Using Electrowetting on Coplanar Control Electrodes
,”
Nanoscale Microscale Thermophys. Eng.
,
14
(
2
), pp.
63
74
.
2.
Yan
,
Z.
,
Jin
,
M.
,
Li
,
Z.
,
Zhou
,
G.
, and
Shui
,
L.
,
2019
, “
Droplet-Based Microfluidic Thermal Management Methods for High Performance Electronic Devices
,”
Micromachines (Basel)
,
10
(
2
), p.
89
.
3.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.
4.
Zhang
,
Z.
,
Wang
,
X.
, and
Yan
,
Y.
,
2021
, “
A Review of the State-of-the-Art in Electronic Cooling
,”
e-Prime–Adv. Electr. Eng. Electron. Energy
,
1
, p.
100009
.
5.
Garimella
,
S. V.
, and
Sobhan
,
C. B.
,
2001
, “
Recent Advances in the Modeling and Applications of Nonconventional Heat Pipes
,”
Adv. Heat Transfer
,
35
(
C
), pp.
249
308
.
6.
Kumar
,
A.
,
Kangude
,
P.
, and
Srivastava
,
A.
,
2023
, “
Coupled Bubble Dynamics and Interaction Mechanisms of Adjacently Nucleated Vapor Bubbles Under Subcooled Pool Boiling Regime
,”
Phys. Fluids
,
35
(
8
), p.
087107
.
7.
Mousa
,
M. H.
,
Yang
,
C.-M.
,
Nawaz
,
K.
, and
Miljkovic
,
N.
,
2022
, “
Review of Heat Transfer Enhancement Techniques in Two-Phase Flows for Highly Efficient and Sustainable Cooling
,”
Renewable Sustainable Energy Rev.
,
155
, p.
111896
.
8.
Guggilla
,
G.
,
Narayanaswamy
,
R.
, and
Pattamatta
,
A.
,
2020
, “
An Experimental Investigation Into the Spread and Heat Transfer Dynamics of a Train of Two Concentric Impinging Droplets Over a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
110
(
Sept. 2019
), p.
109916
.
9.
Chakraborty
,
S.
,
Rosen
,
M. A.
, and
MacDonald
,
B. D.
,
2017
, “
Analysis and Feasibility of an Evaporative Cooling System With Diffusion-Based Sessile Droplet Evaporation for Cooling Microprocessors
,”
Appl. Therm. Eng.
,
125
, pp.
104
110
.
10.
Benther
,
J. D.
,
Pelaez-Restrepo
,
J. D.
,
Stanley
,
C.
, and
Rosengarten
,
G.
,
2021
, “
Heat Transfer During Multiple Droplet Impingement and Spray Cooling: Review and Prospects for Enhanced Surfaces
,”
Int. J. Heat Mass Transfer
,
178
, p.
121587
.
11.
Lee
,
J.
,
Kim
,
J.
, and
Kiger
,
K. T.
,
2001
, “
Time-and Space-Resolved Heat Transfer Characteristics of Single Droplet Cooling Using Microscale Heater Arrays
,”
Int. J. Heat Fluid Flow
,
22
(
2
), pp.
188
200
.
12.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.
13.
Gholijani
,
A.
,
Schlawitschek
,
C.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2020
, “
Heat Transfer During Drop Impingement Onto a Hot Wall: The Influence of Wall Superheat, Impact Velocity, and Drop Diameter
,”
Int. J. Heat Mass Transfer
,
153
, p.
119661
.
14.
Plawsky
,
J. L.
,
Fedorov
,
A. G.
,
Garimella
,
S. V.
,
Ma
,
H. B.
,
Maroo
,
S. C.
,
Chen
,
L.
, and
Nam
,
Y.
,
2014
, “
Nano- and Microstructures for Thin-Film Evaporation—A Review
,”
Nanoscale Microscale Thermophys. Eng.
,
18
(
3
), pp.
251
269
.
15.
Chamakos
,
N. T.
,
Kavousanakis
,
M. E.
,
Boudouvis
,
A. G.
, and
Papathanasiou
,
A. G.
,
2016
, “
Droplet Spreading on Rough Surfaces: Tackling the Contact Line Boundary Condition
,”
Phys. Fluids
,
28
(
2
), p.
022105
.
16.
Ibrahem
,
K.
,
Abd Rabbo
,
M. F.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2010
, “
Experimental Investigation of Evaporative Heat Transfer Characteristics at the 3-Phase Contact Line
,”
Exp. Therm. Fluid Sci.
,
34
(
8
), pp.
1036
1041
.
17.
Raj
,
R.
,
Kunkelmann
,
C.
,
Stephan
,
P.
,
Plawsky
,
J.
, and
Kim
,
J.
,
2012
, “
Contact Line Behavior for a Highly Wetting Fluid Under Superheated Conditions
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2664
2675
.
18.
Tartarini
,
P.
,
Lorenzini
,
G.
, and
Randi
,
M. R.
,
1999
, “
Experimental Study of Water Droplet Boiling on Hot, Non-Porous Surfaces
,”
Heat Mass Transfer
,
34
(
6
), pp.
437
447
.
19.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2017
, “
Drop Collision With a Hot, Dry Solid Substrate: Heat Transfer During Nucleate Boiling
,”
Phys. Rev. Fluids
,
2
(
7
), p.
074301
.
20.
Ashikhmin
,
A.
,
Semyonova
,
A.
,
Fedorov
,
V.
,
Misyura
,
S.
, and
Piskunov
,
M.
,
2023
, “
Nucleate Boiling Heat Transfer During Water–IN–Oil Emulsion Drop Impact Onto a Heated Solid Surface
,”
Int. J. Therm. Sci.
,
184
, p.
107989
.
21.
Hays
,
R.
,
Maynes
,
D.
, and
Crockett
,
J.
,
2016
, “
Thermal Transport to Droplets on Heated Superhydrophobic Substrates
,”
Int. J. Heat Mass Transfer
,
98
, pp.
70
80
.
22.
Chaze
,
W.
,
Caballina
,
O.
,
Castanet
,
G.
,
Pierson
,
J. F.
,
Lemoine
,
F.
, and
Maillet
,
D.
,
2019
, “
Heat Flux Reconstruction by Inversion of Experimental Infrared Temperature Measurements—Application to the Impact of a Droplet in the Film Boiling Regime
,”
Int. J. Heat Mass Transfer
,
128
, pp.
469
478
.
23.
Schmidt
,
J. B.
,
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2020
, “Measurement of the Heat Flux During a Drop Impact Onto a Hot Dry Solid Surface Using Infrared Thermal Imaging,”
New Results in Numerical and Experimental Fluid Mechanics XII
,
A.
Dillmann
,
G.
Heller
,
E.
Krämer
,
C.
Wagner
,
C.
Tropea
, and
S.
Jakirlić
, eds.,
Springer International Publishing
,
Cham
, pp.
553
562
.
24.
Pan
,
Z.
,
Dash
,
S.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2013
, “
Assessment of Water Droplet Evaporation Mechanisms on Hydrophobic and Superhydrophobic Substrates
,”
Langmuir
,
29
(
51
), pp.
15831
15841
.
25.
McHale
,
G.
,
Aqil
,
S.
,
Shirtcliffe
,
N. J.
,
Newton
,
M. I.
, and
Erbil
,
H. Y.
,
2005
, “
Analysis of Droplet Evaporation on a Superhydrophobic Surface
,”
Langmuir
,
21
(
24
), pp.
11053
11060
.
26.
Guo
,
C.
,
Maynes
,
D.
,
Crockett
,
J.
, and
Zhao
,
D.
,
2019
, “
Heat Transfer to Bouncing Droplets on Superhydrophobic Surfaces
,”
Int. J. Heat Mass Transfer
,
137
, pp.
857
867
.
27.
Al-Sharafi
,
A.
,
Yilbas
,
B. S.
,
Ali
,
H.
, and
Alaqeeli
,
N.
,
2018
, “
A Water Droplet Pinning and Heat Transfer Characteristics on an Inclined Hydrophobic Surface
,”
Sci. Rep.
,
8
(
1
), pp.
1
20
.
28.
Teodori
,
E.
,
Pontes
,
P.
,
Moita
,
A. S.
, and
Moreira
,
A. L. N.
,
2018
, “
Thermographic Analysis of Interfacial Heat Transfer Mechanisms on Droplet/Wall Interactions With High Temporal and Spatial Resolution
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
284
294
.
29.
Bergman
,
T. L.
,
Lavine
,
A. S.
,
Incropera
,
F. P.
, and
D
,
D. P.
,
2018
,
Fundamentals of Heat and Mass Transfer
, 8th ed,
John Wiley & Sons, Inc
,
Hoboken, NJ
.
You do not currently have access to this content.