Solution of contact problems for layered elastic solids generally requires the use of numerical methods. Recently, the fast Fourier transform (FFT) technique has been applied to such contacts. While very fast, FFT is strictly applicable only to periodic contact problems. When it is applied to essentially non-periodic contacts, an error is introduced in the numerical solution. A new method that overcomes the limitation of the “straightforward” FFT approach for solving non-periodic layered contact problems is introduced in the present article. A special correction procedure based on the multi-level multi-summation technique is used to compensate the FFT results for the periodicity error. The use of a robust iteration scheme based on the conjugate gradient method ensures that the new method is applicable to contact problems involving real rough surfaces. Numerical examples demonstrate that the new method is both accurate and fast. [S0742-4787(00)00501-4]

1.
Kennedy
,
F. E.
, and
Ling
,
F. F.
,
1974
, “
Elasto-Plastic Indentation of a Layered Medium
,”
ASME J. Eng. Mater. Technol.
,
96
, pp.
97
103
.
2.
Tangena
,
A. G.
, and
Wijnhoven
,
P. J. M.
,
1988
, “
The Correlation Between Mechanical Stresses and Wear in a Layered System
,”
Wear
,
121
, pp.
27
35
.
3.
Komvopoulos
,
K.
,
1989
, “
Elastic-Plastic Finite Element Analysis of Indented Layered Media
,”
ASME J. Tribol.
,
111
, pp.
430
439
.
4.
Bhattacharya
,
A. K.
, and
Nix
,
W. D.
,
1988
, “
Finite Element Simulation of Indentation Experiments
,”
Int. J. Solids Struct.
,
24
, pp.
881
891
.
5.
Laursen
,
T. A.
, and
Simo
,
J. C.
,
1992
, “
A Study of the Mechanics of Microindentation Using Finite Elements
,”
J. Mater. Res.
,
7
, pp.
618
626
.
6.
Montmitonnet
,
P.
,
Edlinger
,
M. L.
, and
Felder
,
E.
,
1993
, “
Finite Element Analysis of Elastoplastic Indentation: Part II—Application to Hard Coatings
,”
ASME J. Tribol.
,
115
, pp.
15
19
.
7.
Wang
,
H. F.
, and
Bangert
,
H.
,
1993
, “
Three-Dimensional Finite Element Simulation of Vickers Indentation on Coated Systems
,”
Mater. Sci. Eng., A
,
163
, pp.
43
50
.
8.
Burmister
,
D. M.
,
1945
, “
The General Theory of Stresses and Displacements in Layered Systems
,”
J. Appl. Phys.
,
16
, pp.
89
94
.
9.
Barovich
,
D.
,
Kingsley
,
S. C.
, and
Ku
,
T. C.
,
1964
, “
Stresses on a Thin Strip or Slab with Different Elastic Properties From that of the Substrate Due to Elliptically Distributed Load
,”
Int. J. Eng. Sci.
,
2
, pp.
253
268
.
10.
Chen
,
W. T.
,
1971
, “
Computation of Stresses and Displacements in a Layered Elastic Medium
,”
Int. J. Eng. Sci.
,
9
, pp.
775
800
.
11.
Chen
,
W. T.
, and
Engel
,
P. A.
,
1972
, “
Impact and Contact Stress Analysis in Multilayer Media
,”
Int. J. Solids Struct.
,
8
, pp.
1257
1281
.
12.
King
,
R. B.
, and
O’Sullivan
,
T. C.
,
1987
, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space
,”
Int. J. Solids Struct.
,
23
, pp.
581
597
.
13.
O’Sullivan
,
T. C.
, and
King
,
R. B.
,
1988
, “
Sliding Contact Stress Field Due to a Spherical Indenter on a Layered Elastic Half-Space
,”
ASME J. Tribol.
,
110
, pp.
235
240
.
14.
Gupta
,
P. K.
, and
Walowit
,
J. A.
,
1974
, “
Contact Stresses Between a Cylinder and a Layered Elastic Solid
,”
ASME J. Lubr. Technol.
,
96
, pp.
250
257
.
15.
Chiu
,
Y. P.
, and
Hartnett
,
M. J.
,
1983
, “
A Numerical Solution for Layered Solid Contact Problems with Application to Bearings
,”
ASME J. Lubr. Technol.
,
105
, pp.
585
590
.
16.
Cole
,
S. J.
, and
Sayles
,
R. S.
,
1992
, “
A Numerical Model for the Contact of Layered Elastic Bodies with Real Rough Surfaces
,”
ASME J. Tribol.
,
114
, pp.
334
340
.
17.
Cooley
,
J. W.
, and
Tukey
,
J. W.
,
1965
, “
An Algorithm for the Machine Calculation of Complex Fourier Series
,”
Math. Comput.
,
19
, pp.
297
301
.
18.
Ju
,
Y.
, and
Farris
,
T. N.
,
1996
, “
Spectral Analysis of Two-Dimensional Contact Problems
,”
ASME J. Tribol.
,
118
, pp.
320
328
.
19.
Nogi
,
T.
, and
Kato
,
T.
,
1997
, “
Influence of a Hard Surface Layer on the Limit of Elastic Contact—Part I: Analysis Using a Real Surface Model
,”
ASME J. Tribol.
,
119
, pp.
493
500
.
20.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
Fast Methods for Solving Rough Contact Problems: A Comparative Study
,”
ASME J. Tribol.
,
122
, pp.
36
41
.
21.
Brandt
,
A.
, and
Lubrecht
,
A. A.
,
1990
, “
Multilevel Matrix Multiplication and Fast Solution of Integral Equations
,”
J. Comput. Phys.
,
90
, pp.
348
370
.
22.
Polonsky, I. A., and Keer, L. M., 1999, “A New Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multi-Summation and Conjugate Gradient Techniques,” Wear, in print.
23.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge.
24.
Kalker
,
J. J.
,
1986
, “
Numerical Calculation of the Elastic Field in a Half-Space
,”
Communications in Applied Numerical Methods
,
2
, pp.
401
410
.
25.
Sackfield
,
A.
, and
Hills
,
D.
,
1983
, “
A Note on the Hertz Contact Problem: A Correlation of Standard Formulae
,”
J. Strain Anal.
,
18
, pp.
195
197
.
26.
Polonsky
,
I. A.
,
Chang
,
T. P.
,
Keer
,
L. M.
, and
Sproul
,
W. D.
,
1997
, “
An Analysis of the Effect of Hard Coatings on Near-Surface Rolling Contact Fatigue Initiation Induced by Surface Roughness
,”
Wear
,
208
, pp.
204
219
.
You do not currently have access to this content.