A mechanical model of cold rolling of foil is coupled with a sophisticated tribological model. The tribological model treats the “mixed” lubrication regime of practical interest, in which there is “real” contact between the roll and strip as well as pressurized oil between the surfaces. The variation of oil film thickness and contact ratio in the bite is found by considering flattening of asperities on the foil and the build-up of hydrodynamic pressure through the bite. The boundary friction coefficient for the contact areas is taken from strip drawing tests under similar tribological conditions. Theoretical results confirm that roll load and forward slip decrease with increasing rolling speed due to the decrease in contact ratio and friction. The predictions of the model are verified using mill trials under industrial conditions. For both thin strip and foil, the load predicted by the model has reasonable agreement with the measurements. For rolling of foil, forward slip is overestimated. This is greatly improved if a variation of friction through the bite is considered.

1.
Fleck
,
N. A.
,
Johnson
,
K. L.
,
Mear
,
M. E.
, and
Zhang
,
L. C.
,
1992
, “
Cold Rolling of Foil
,”
Proc. Instn. Mech. Engrs
,
206
, pp.
119
131
.
2.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press, Cambridge, UK.
3.
Dixon, A. E., and Yuen, W. Y. D., 1995, “A Computationally Fast Method to Model Thin Strip Rolling,” Proc. Computational Techniques and Application Conference, pp. 239–246.
4.
Gratacos
,
P.
,
Montmittonet
,
P.
,
Fromholz
,
P.
, and
Chenot
,
J. L.
,
1992
, “
A Plane-Strain Elastic Finite-Element Model for Cold Rolling of Thin Strip
,”
Int. J. Mech. Sci.
,
34
, pp.
195
210
.
5.
Le
,
H. R.
, and
Sutcliffe
,
M. P. F.
,
2001
, “
A Robust Model for Rolling of Thin Strip and Foil
,”
Int. J. Mech. Sci.
,
43
, pp.
1405
1419
.
6.
Sutcliffe
,
M. P. F.
, and
Johnson
,
K. L.
,
1990
, “
Lubrication in Cold Strip Rolling in the “Mixed” Regime
,”
Proc. Instn Mech Engrs.
,
204
, pp.
249
261
.
7.
Sheu
,
S.
, and
Wilson
,
W. R. D.
,
1994
, “
Mixed Lubrication of Strip Rolling
,”
STLE Tribol. Trans.
,
37
, pp.
483
493
.
8.
Lin
,
H. S.
,
Marsault
,
N.
,
Wilson
,
W. R. D.
,
1998
, “
A Mixed Lubrication Model for Cold Strip Rolling: Part I—Theoretical
,”
Tribol. Trans.
,
41
, pp.
317
326
.
9.
Marsault, N., Montmitonnet, P., Deneuville, P., and Gratacos, P., 1998, “A Model of Mixed Lubrication for Cold Rolling of Strip,” Proc. NUMIFORM 98, Twente University, Netherlands, A. A. Balkema (Rotterdam), pp. 715–720.
10.
Schey
,
J. A.
,
1983
, “
Surface Roughness Effects in Metalworking Lubrication
,”
Lubr. Eng.
,
39
, pp.
376
382
.
11.
Sutcliffe
,
M. P. F.
,
1988
, “
Surface Asperity Deformation in Metal Forming Processes
,”
Int. J. Mech. Sci.
,
30
, pp.
847
868
.
12.
Wilson
,
W. R. D.
, and
Sheu
,
S.
,
1988
, “
Real Area of Contact and Boundary Friction in Metal Forming
,”
Int. J. Mech. Sci.
,
30
, pp.
475
489
.
13.
Sutcliffe
,
M. P. F.
, and
Johnson
,
K. L.
,
1990
, “
Experimental Measurements of Lubricant Film Thickness in Cold Strip Rolling
,”
Proc. Instn Mech Engrs
,
204
, pp.
263
273
.
14.
Tabary
,
P. E.
,
Sutcliffe
,
M. P. F.
,
Porral
,
F.
, and
Deneuville
,
P.
,
1996
, “
Measurements of Friction in Cold Metal Rolling
,”
ASME J. Tribol.
,
118
, pp.
629
636
.
15.
Le
,
H. R.
, and
Sutcliffe
,
M. P. F.
,
2000
, “
A Two-Wavelength Model of Surface Flattening in Cold-Metal Rolling With Mixed Lubrication
,”
STLE Tribol. Trans.
,
43
, No.
4
, pp.
595
602
.
16.
Le
,
H. R.
, and
Sutcliffe
,
M. P. F.
,
2001
, “
A Semi-Empirical Friction Model for Cold Metal Rolling
,”
STLE Tribol. Trans.
,
44
, No.
2
, pp.
284
290
.
17.
Keife
,
H.
, and
Ionsater
,
T.
,
1997
, “
Influence of Rolling Speed Upon Friction in Cold Rolling of Foils
,”
ASME J. Tribol.
,
119
, pp.
349
357
.
18.
Fleck
,
N. A.
, and
Johnson
,
K. L.
,
1987
, “
Towards a New Theory of Cold Rolling Thin Foil
,”
Int. J. Mech. Sci.
,
29
, pp.
507
524
.
19.
Sutcliffe, M. P. F., and Montmitonnet, P., 1999, “A Coupled Tribology and Mechanical Model for Thin Foil Rolling in the Mixed Lubrication Regime,” Proceedings of the 3rd Conference on Modeling of Metal Rolling Processes, 13–15 December, London, The Chameleon Press Ltd., pp. 187–196.
20.
Sutcliffe, M. P. F., and Montmitonnet, P., 2001, “Numerical Modeling of Lubricated Foil Rolling,” Revue de Metallurgie, pp. 435–442.
21.
Montmitonnet
,
P.
,
Delamare
,
F.
, and
Rizoulie`res
,
B.
,
2000
, “
Transfer Layer and Friction in Cold Metal Strip Rolling Processes
,”
Wear
,
245
, No.
1–2
, pp.
125
135
.
22.
Briscoe
,
B. J.
,
Scruton
,
B.
, and
Willis
,
F. R.
,
1973
, “
The Shear Strength of Thin Lubricant Films
,”
Proc. R. Soc. London, Ser. A
,
A333
, pp.
99
114
.
23.
Bair
,
S.
, and
Winer
,
W. O.
,
1982
, “
Some Observations in High Pressure Rheology of Lubricants
,”
ASME J. Lubr. Technol.
,
104
, pp.
357
364
.
24.
Evans
,
C. R.
, and
Johnson
,
K. L.
,
1986
, “
The Rheological Properties of Elastohydrodynamic Lubricants
,”
Proc. Instn Mech Engrs
,
200C
, pp.
303
312
.
25.
Eyring
,
H.
,
1936
, “
Viscosity, Plasticity and Diffusion as Examples of Reaction Rates
,”
J. Chem. Phys.
,
4
, pp.
283
291
.
26.
Sutcliffe
,
M. P. F.
,
1991
, “
Measurements of the Rheological Properties of a Kerosene Metal-Rolling Lubricant
,”
Proc. Inst. Mech. Engrs.
,
B205
, pp.
215
219
.
27.
Christensen
,
H.
,
1970
, “
Stochastic Models for Hydrodynamic Lubrication of Rough Surfaces
,”
Proc. Instn Mech Engrs
,
104
, Pt. 1, pp.
1013
1022
.
28.
Patir
,
N.
, and
Cheng
,
H. S.
,
1978
, “
An Average Flow Model for Determining Effects of Three-Dimensional Roughness on Partial Hydrodynamic Lubrication
,”
ASME J. Lubr. Technol.
,
100
, pp.
12
17
.
29.
Korzekwa
,
D. A.
,
1992
, “
Surface Asperity Deformation During Sheet Forming
,”
Int. J. Mech. Sci.
,
34
, No.
7
, pp.
521
539
.
30.
Sutcliffe
,
M. P. F.
,
1999
, “
Flattening of Random Rough Surfaces in Metal Forming Processes
,”
ASME J. Tribol.
,
12
, pp.
433
440
.
31.
Wilson, W. R. D., and Walowit, J. A., 1972, “An Isothermal Hydrodynamic Lubrication Theory for Strip Rolling With Front and Back Tension,” Proc. 1971 Tribology Convention, I. Mech. E., London, pp. 164–172.
You do not currently have access to this content.