The flow inside a seal chamber as induced by the influx of the flush fluid and the rotation of the primary ring is analyzed. The 3-D flow characteristic around the mating ring and the rotating ring are predicted by solving the Navier-Stokes equations in cylindrical coordinates. For this purpose, the pressure correction method was used in conjunction with the SIMPLE algorithm. A series of numerical solutions is presented that show the flow mechanism within the gap between the rings and the gland. The implication of the flow characteristic on the cooling of the rings is discussed.

1.
Buck
,
G. S.
, 1989, “
Heat Transfer in Mechanical Seals
,”
Proc. 6th Int. Pump User Symp
., Baton Rouge, LA, pp.
9
15
.
2.
Buck
,
G. S.
, 1999, “
Estimating Heat Generation, Face Temperature and Flush Rate for Mechanical Seals
,” PumpUsers Expo’99, Baton Rouge, LA, pp.
167
172
.
3.
Pascovici
,
M. D.
, and
Etsion
,
I.
, 1992, “
A Thermo-Hydrodynamic Analysis of a Mechanical Face Seal
,”
ASME J. Tribol.
0742-4787,
114
, pp.
639
645
.
4.
Lebeck
,
A. O.
, 1991,
Principles and Design of Mechanical Face Seals
,
Wiley
, New York.
5.
Jang
,
J. Y.
, and
Khonsari
,
M. M.
, 2003, “
A Generalized Thermoelastic Instability Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021,
459
, pp.
309
329
.
6.
Merati
,
P.
,
Okita
,
N. A.
,
Phillips
,
R. L.
, and
Jacobs
,
L. E.
, 1999, “
Experimental and Computational Investigation of Flow and Thermal Behavior of A Mechanical Seal
,”
Tribol. Trans.
1040-2004,
42
(
4
), pp.
731
738
.
7.
Phillips
,
R. L.
,
Jacobs
,
L. E.
, and
Merati
,
P.
, 1997, “
Experimental Determination of the Thermal Characteristics of A Mechanical Seal and Its Operating Environment
,”
Tribol. Trans.
1040-2004,
40
(
4
), pp.
559
568
.
8.
Verzicco
,
R.
,
Iaccarino
,
G.
,
Fatica
,
M.
, and
Orlandi
,
P.
, 2000, “
Flow in an Impeller Stirred Tank Using an Immersed Boundary Method
,” Center for Turbulent Research, Annual Research Briefs, Stanford University, Stanford, CA, pp.
251
261
.
9.
Verzicco
,
R.
, and
Orlandi
,
P.
, 1996, “
A Finite-Difference Scheme for Three-Dimensional Incompressible flows in Cylindrical Coordinates
,”
J. Comput. Phys.
0021-9991,
123
, pp.
402
415
.
10.
Lopez
,
J. M.
,
Marques
,
F.
, and
Shen
,
J.
, 2002, “
An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries
,”
J. Comput. Phys.
0021-9991,
176
, pp.
384
401
.
11.
Shen
,
J.
, 1997, “
Efficient Spectral-Galerkin Methods III. Polar and Cylindrical Geometries
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
18
, pp.
1583
1596
.
12.
Faber
,
T. E.
, 1995,
Fluid Dynamics for Physicists
,
Cambridge U.P.
, Cambridge.
13.
Anderson
,
J. D.
, 1995,
Computational Fluid Dynamics: the Basics with Applications
,
McGraw-Hill
, New York.
14.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
, New York.
15.
Fletcher
,
C. A. J.
, 1991,
Computational Techniques for Fluid Dynamics Volume I&II
,
Springer-Verlag
, New York.
16.
Chung
,
T. J.
, 2002,
Computational Fluid Dynamics
,
Cambridge U.P.
, Cambridge.
17.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Introduction to Heat Transfer
, 3rd ed.,
Wiley
, New York.
18.
Roberts
,
P. H.
, 1965, “
The Solution of the Characteristic Value Problem
,”
Proc. R. Soc. London, Ser. A
1364-5021,
283
, pp.
550
556
.
19.
Koschmieder
,
E. L.
, 1993,
Bernard Cells and Taylor Vortices
,
Cambridge U. P.
, New York.
You do not currently have access to this content.