The flow inside a seal chamber as induced by the influx of the flush fluid and the rotation of the primary ring is analyzed. The 3-D flow characteristic around the mating ring and the rotating ring are predicted by solving the Navier-Stokes equations in cylindrical coordinates. For this purpose, the pressure correction method was used in conjunction with the SIMPLE algorithm. A series of numerical solutions is presented that show the flow mechanism within the gap between the rings and the gland. The implication of the flow characteristic on the cooling of the rings is discussed.
1.
Buck
, G. S.
, 1989, “Heat Transfer in Mechanical Seals
,” Proc. 6th Int. Pump User Symp
., Baton Rouge, LA, pp. 9
–15
.2.
Buck
, G. S.
, 1999, “Estimating Heat Generation, Face Temperature and Flush Rate for Mechanical Seals
,” PumpUsers Expo’99, Baton Rouge, LA, pp. 167
–172
.3.
Pascovici
, M. D.
, and Etsion
, I.
, 1992, “A Thermo-Hydrodynamic Analysis of a Mechanical Face Seal
,” ASME J. Tribol.
0742-4787, 114
, pp. 639
–645
.4.
Lebeck
, A. O.
, 1991, Principles and Design of Mechanical Face Seals
, Wiley
, New York.5.
Jang
, J. Y.
, and Khonsari
, M. M.
, 2003, “A Generalized Thermoelastic Instability Analysis
,” Proc. R. Soc. London, Ser. A
1364-5021, 459
, pp. 309
–329
.6.
Merati
, P.
, Okita
, N. A.
, Phillips
, R. L.
, and Jacobs
, L. E.
, 1999, “Experimental and Computational Investigation of Flow and Thermal Behavior of A Mechanical Seal
,” Tribol. Trans.
1040-2004, 42
(4
), pp. 731
–738
.7.
Phillips
, R. L.
, Jacobs
, L. E.
, and Merati
, P.
, 1997, “Experimental Determination of the Thermal Characteristics of A Mechanical Seal and Its Operating Environment
,” Tribol. Trans.
1040-2004, 40
(4
), pp. 559
–568
.8.
Verzicco
, R.
, Iaccarino
, G.
, Fatica
, M.
, and Orlandi
, P.
, 2000, “Flow in an Impeller Stirred Tank Using an Immersed Boundary Method
,” Center for Turbulent Research, Annual Research Briefs, Stanford University, Stanford, CA, pp. 251
–261
.9.
Verzicco
, R.
, and Orlandi
, P.
, 1996, “A Finite-Difference Scheme for Three-Dimensional Incompressible flows in Cylindrical Coordinates
,” J. Comput. Phys.
0021-9991, 123
, pp. 402
–415
.10.
Lopez
, J. M.
, Marques
, F.
, and Shen
, J.
, 2002, “An Efficient Spectral-Projection Method for the Navier-Stokes Equations in Cylindrical Geometries
,” J. Comput. Phys.
0021-9991, 176
, pp. 384
–401
.11.
Shen
, J.
, 1997, “Efficient Spectral-Galerkin Methods III. Polar and Cylindrical Geometries
,” SIAM J. Sci. Comput. (USA)
1064-8275, 18
, pp. 1583
–1596
.12.
Faber
, T. E.
, 1995, Fluid Dynamics for Physicists
, Cambridge U.P.
, Cambridge.13.
Anderson
, J. D.
, 1995, Computational Fluid Dynamics: the Basics with Applications
, McGraw-Hill
, New York.14.
Patankar
, S. V.
, 1980, Numerical Heat Transfer and Fluid Flow
, McGraw-Hill
, New York.15.
Fletcher
, C. A. J.
, 1991, Computational Techniques for Fluid Dynamics Volume I&II
, Springer-Verlag
, New York.16.
Chung
, T. J.
, 2002, Computational Fluid Dynamics
, Cambridge U.P.
, Cambridge.17.
Incropera
, F. P.
, and DeWitt
, D. P.
, 1996, Introduction to Heat Transfer
, 3rd ed., Wiley
, New York.18.
Roberts
, P. H.
, 1965, “The Solution of the Characteristic Value Problem
,” Proc. R. Soc. London, Ser. A
1364-5021, 283
, pp. 550
–556
.19.
Koschmieder
, E. L.
, 1993, Bernard Cells and Taylor Vortices
, Cambridge U. P.
, New York.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.