Fatigue lives of rolling element bearings exhibit a wide scatter due to the statistical nature of the rolling contact fatigue failure process. Empirical life models that account for this dispersion do not provide insights into the physical mechanisms that lead to this scatter. One of the primary reasons for dispersion in lives is the stochastic nature of the bearing material. Here, a damage mechanics based fatigue model is introduced in conjunction with the idea of discrete material representation that takes the effect of material microstructure explicitly into account. Two sources of material randomness are considered: (1) the topological randomness due to geometric variability in the material microstructure and (2) the material property randomness due to nonuniform distribution of properties throughout the material. The effect of these variations on the subsurface stress fields in rolling element line contacts is studied. The damage model, which incorporates cyclic damage accumulation and progressive degradation of material properties with rolling contact cycling, is used to study the mechanisms of subsurface initiated spalling in bearing contacts. Crack initiation as well as propagation stages are modeled using damaged material zones in a unified framework. The spalling phenomenon is found to occur through microcrack initiation below the surface where multiple microcracks coalesce and subsequent cracks propagate to the surface. The computed crack trajectories and spall profiles are found to be consistent with experimental observations. The microcrack initiation phase is found to be only a small fraction of the total spalling life and the scatter in total life is primarily governed by the scatter in the propagation phase of the cracks through the microstructure. Spalling lives are found to follow a three-parameter Weibull distribution more closely compared to the conventionally used two-parameter Weibull distribution. The Weibull slopes obtained are within experimentally observed values for bearing steels. Spalling lives are found to follow an inverse power law relationship with respect to the contact pressure with a stress-life exponent of 9.35.

1.
Littmann
,
W. E.
, 1969, “
The Mechanism of Contact Fatigue
,”
Interdisciplinary Approach to the Lubrication of Concentrated Contacts, Proceedings of a Symposium
,
P.M.
Ku
, ed.,
Troy, NY
, NASA Special Report No. SP-237, pp.
309
378
.
2.
Littmann
,
W. E.
, and
Widner
,
R. L.
, 1966, “
Propagation of Contact Fatigue From Surface and Sub-Surface Origins
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
624
636
.
3.
Furuma
,
K.
,
Shirota
,
S.
, and
Hirakawa
,
K.
, 1975, “
The Subsurface-Initiated and the Surface-Initiated Rolling Fatigue Life of Bearing Steels
,” Proceedings of the JSLE-ASLE International Conference on Lubrication,
Tokyo
, pp.
475
483
.
4.
Nishioka
,
K.
, 1957, “
On the Effect of Inclusion Upon the Fatigue Strength
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
6
, pp.
382
385
.
5.
Murakami
,
Y.
,
Kodama
,
S.
, and
Konuma
,
S.
, 1989, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
0142-1123,
11
(
5
), pp.
291
298
.
6.
Martin
,
J. A.
,
Borgese
,
S. F.
, and
Eberhardt
,
A. D.
, 1966, “
Microstructural Alterations of Rolling-Bearing Steel Undergoing Cyclic Stressing
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
555
567
.
7.
Weibull
,
W.
, 1939, “
A Statistical Theory of the Strength of Materials
,”
IVA Handlinger, Proceedings of the Royal Swedish Academy of Engineering
, Vol.
151
.
8.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
1
(
3
), pp.
1
50
.
9.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
0742-4787,
107
(
3
), pp.
367
378
.
10.
Zhou
,
R. S.
, 1993, “
Surface Topography and Fatigue Life of Rolling Contact Bearings
,”
Tribol. Trans.
1040-2004,
36
, pp.
329
340
.
11.
Zaretsky
,
E. V.
, 1994, “
Design for Life, Plan for Death
,”
Mach. Des.
0024-9114,
66
(
15
), pp.
55
59
.
12.
Cheng
,
W.
, and
Cheng
,
H. S.
, 1995, “
Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue for Roller Bearings
,” Proceedings of the 1995 Joint ASME/STLE Tribology Conference,
Orlando, FL
, Oct. 8–11.
13.
Raje
,
N. N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
Jr.
, and
Hoeprich
,
M. R.
, 2008, “
A Numerical Model for Life Scatter in Rolling Element Bearings
,”
ASME J. Tribol.
0742-4787,
130
(
1
), p.
011011
.
14.
Kachanov
,
L. M.
, 1958, “
Time of the Rupture Process Under Creep Conditions
,”
Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk
,
8
, pp.
26
31
.
15.
Robotnov
,
Y. N.
, 1969,
Creep Problems in Structural Mechanics
,
North-Holland
,
Amsterdam
.
16.
Chaboche
,
J. L.
, 1988, “
Continuum Damage Mechanics: Part I—General Concepts
,”
ASME J. Appl. Mech.
0021-8936,
55
, pp.
59
64
.
17.
Raje
,
N. N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
Jr.
, 2007, “
A Discrete Element Approach to Evaluate Stresses Due to Line Loading on an Elastic Half-Space
,”
Comput. Mech.
0178-7675,
40
(
3
), pp.
513
529
.
18.
Ito
,
O.
, and
Fuller
,
E. R.
, 1993, “
Computer Modeling of Anisotropic Grain Microstructure in Two Dimensions
,”
Acta Metall. Mater.
0956-7151,
41
(
1
), pp.
191
198
.
19.
Zavattieri
,
P. D.
, and
Espinosa
,
H. D.
, 2001, “
Grain Level Analysis of Crack Initiation and Propagation in Brittle Materials
,”
Acta Mater.
1359-6454,
49
, pp.
4291
4311
.
20.
Chaboche
,
J. L.
, and
Lesne
,
P. M.
, 1988, “
A Non-Linear Continuous Fatigue Damage Model
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
11
(
1
), pp.
1
17
.
21.
Xiao
,
Y. C.
,
Li
,
S.
, and
Gao
,
Z.
, 1998, “
A Continuum Damage Mechanics Model for High Cycle Fatigue
,”
Int. J. Fatigue
0142-1123,
20
(
7
), pp.
503
508
.
22.
Memon
,
I. R.
,
Cui
,
D.
, and
Zhang
,
X.
, 1999, “
Fatigue Life Prediction of 3-D Problems by Damage Mechanics—Finite Element Additional Load Method
,” Fatigue ’99: Proceedings of the Seventh International Fatigue Congress,
Beijing, P. R. C.
, Jun. 8–12, pp.
827
832
.
23.
Bolotin
,
V. V.
, 1999,
Mechanics of Fatigue
,
CRC Ps
,
Boca Raton, FL
.
24.
Lemaitre
,
J.
,
Sermage
,
J. P.
, and
Desmorat
,
R.
, 1998, “
A Two Scale Damage Concept Applied to Fatigue
,”
Int. J. Fract.
0376-9429,
97
, pp.
67
81
.
25.
Lemaitre
,
J.
, 1992,
A Course on Damage Mechanics
,
Springer-Verlag
,
Berlin
.
26.
Styri
,
H.
, 1951, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,”
Proceedings of the American Society for Testing and Materials
, Vol.
51
, pp.
682
700
.
27.
Yoshioka
,
T.
, 1993, “
Detection of Rolling Contact Sub-Surface Fatigue Cracks Using Acoustic Emission Technique
,”
Lubr. Eng.
0024-7154,
49
(
4
), pp.
303
308
.
28.
Otsuka
,
A.
,
Sugawara
,
H.
, and
Shomura
,
M.
, 1996, “
A Test Method for Mode II Fatigue Crack Growth Relating to a Model for Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
(
10
), pp.
1265
1275
.
29.
Fajdiga
,
G.
,
Glodez
,
S.
, and
Kramar
,
J.
, 2007, “
Pitting Formation Due to Surface and Sub-Surface Initiated Fatigue Crack Growth in Contacting Mechanical Elements
,”
Wear
0043-1648,
262
, pp.
1217
1224
.
30.
Miyashita
,
Y.
,
Yoshimura
,
Y.
,
Xu
,
J-Q.
,
Horikoshi
,
M.
, and
Mutoh
,
Y.
, 2003, “
Subsurface Crack Propagation in Rolling Contact Fatigue of Sintered Alloy
,”
JSME Int. J., Ser. A
1340-8046,
46
(
3
), pp.
341
347
.
31.
Shao
,
E.
,
Huang
,
X.
,
Wang
,
C.
,
Zhu
,
Y.
, and
Chen
,
Q.
, 1987, “
A Method of Detecting Rolling Contact Crack Initiation and the Establishment of Crack Propagation Curves
,”
,
31
(
1
), pp.
6
11
.
32.
Leng
,
X.
,
Chen
,
Q.
, and
Shao
,
E.
, 1988, “
Initiation and Propagation of Case Crushing Cracks in Rolling Contact Fatigue
,”
Wear
0043-1648,
122
, pp.
33
43
.
33.
Chen
,
L.
,
Chen
,
Q.
, and
Shao
,
E.
, 1989, “
Study on Initiation and Propagation Angles of Sub-Surface Cracks in GCr15 Bearing Steel Under Rolling Contact
,”
Wear
0043-1648,
133
, pp.
205
218
.
34.
Lou
,
B.
,
Han
,
L.
,
Lu
,
Z.
,
Liu
,
S.
, and
Shen
,
F.
, 1990, “
The Rolling Contact Fatigue Behaviors in Carburized and Hardened Steel
,” Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds,
Honolulu, HI
, Jul. 15–20, pp.
627
632
.
35.
Shimizu
,
S.
, 2002, “
Fatigue Limit Concept and Life Prediction Model for Rolling Contact Machine Elements
,”
Tribol. Trans.
1040-2004,
45
(
1
), pp.
39
46
.
36.
Kotzalas
,
M. N.
, 2005, “
Statistical Distribution of Tapered Roller Bearing Fatigue Lives at High Levels of Reliability
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
865
870
.
37.
Lockhart
,
R. A.
, and
Stephens
,
M. A.
, 1994, “
Estimation and Tests of Fit for the Three-Parameter Weibull Distribution
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
56
(
3
), pp.
491
500
.
38.
Poplawski
,
J. V.
,
Peters
,
S. M.
, and
Zaretsky
,
E. V.
, 2001, “
Effect of Roller Profile on Cylindrical Roller Bearing Life Predication—Part I: Comparison of Bearing Life Theories
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
339
350
.
39.
Harris
,
T. A.
, and
Barnsby
,
R. M.
, 2001, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
(
6
), pp.
577
595
.
You do not currently have access to this content.