Microlevel material failure has been recognized as one of the main modes of failure for rolling contact fatigue (RCF) of bearing. Therefore, microlevel features of materials will be of significant importance to RCF investigation. At the microlevel, materials consist of randomly shaped and sized grains, which cannot be properly analyzed using the classical and commercially available finite element method. Hence, in this investigation, a Voronoi finite element method (VFEM) was developed to simulate the microstructure of bearing materials. The VFEM was then used to investigate the effects of microstructure randomness on rolling contact fatigue. Here two different types of randomness are considered: (i) randomness in the microstructure due to random shapes and sizes of the material grains, and (ii) the randomness in the material properties considering a normally (Gaussian) distributed elastic modulus. In this investigation, in order to determine the fatigue life, the model proposed by Raje et al. (“A Numerical Model for Life Scatter in Rolling Element Bearings,” ASME J. Tribol., 130, pp. 011011-1–011011-10), which is based on the Lundberg–Palmgren theory (“Dynamic Capacity of Rolling Bearings,” Acta Polytech. Scand., Mech. Eng. Ser., 1(3), pp. 7–53), is used. This model relates fatigue life to a critical stress quantity and its corresponding depth, but instead of explicitly assuming a Weibull distribution of fatigue lives, the life distribution is obtained as an outcome of numerical simulations. We consider the maximum range of orthogonal shear stress and the maximum shear stress as the critical stress quantities. Forty domains are considered to study the effects of microstructure on the fatigue life of bearings. It is observed that the Weibull slope calculated for the obtained fatigue lives is in good agreement with previous experimental studies and analytical results. Introduction of inhomogeneous elastic modulus and initial flaws within the material domain increases the average critical stresses and decreases the Weibull slope.

1.
Furuma
,
K.
,
Shirota
,
S.
, and
Hirakawa
,
K.
, 1975, “
The Subsurface-Initiated and the Surface-Initiated Rolling Fatigue Life of Bearing Steels
,”
Proceedings of the JSLE-ASLE International Conference on Lubrication
, Tokyo, pp.
475
483
.
2.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
,
107
(
3
), pp.
367
378
. 0742-4787
3.
Zhou
,
R. S.
, 1993, “
Surface Topography and Fatigue Life of Rolling Contact Bearings
,”
Tribol. Trans.
1040-2004,
36
, pp.
329
340
.
4.
Zaretsky
,
E. V.
, 1994, “
Design for Life, Plan for Death
,”
Mach. Des.
0024-9114,
66
(
15
), pp.
55
59
.
5.
Cheng
,
W.
, and
Cheng
,
H. S.
, 1995, “
Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue for Roller Bearings
,”
Proceedings of the 1995 Joint ASME/STLE Tribology Conference
, Orlando, FL.
6.
Ringsberg
,
J. W.
, 2001, “
Life Prediction of Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
0142-1123,
23
(
7
), pp.
575
586
.
7.
Guo
,
Y. B.
, and
Barkey
,
M. E.
, 2004, “
Modeling of Rolling Contact Fatigue for Hard Machined Components With Process-Induced Residual Stress
,”
Int. J. Fatigue
0142-1123,
26
(
6
), pp.
605
613
.
8.
Li
,
Y. G.
,
Kang
,
G. Z.
,
Wang
,
C. G.
,
Dou
,
P.
, and
Wang
,
J.
, 2006, “
Vertical Short-Crack Behavior and Its Application in Rolling Contact Fatigue
,”
Int. J. Fatigue
0142-1123,
28
(
7
), pp.
804
811
.
9.
Lee
,
H. Y.
, and
Lee
,
D. Y.
, 2007, “
The Effects of Indentation on Rolling Contact Fatigue Under Line Contact
,”
J. Korean Inst. Metals Mater.
,
45
(
3
), pp.
163
168
.
10.
Girodin
,
D.
,
Dudragne
,
G.
,
Courbon
,
J.
, and
Vincent
,
A.
, 2006, “
Statistical Analysis of Nonmetallic Inclusions for the Estimation of Rolling Contact Fatigue Range and Quality Control of Bearing Steel
,”
J. ASTM Int.
1546-962X,
3
(
7
), pp.
85
100
.
11.
Andersson
,
J.
, 2005, “
The Influence of Grain Size Variation on Metal Fatigue
,”
Int. J. Fatigue
0142-1123,
27
(
8
), pp.
847
852
.
12.
Miller
,
K. J.
, 1999, “
A Historical Perspective of the Important Parameters of Metal Fatigue and Problems for the Next Century
,”
Proceedings of the Seventh International Fatigue Congress, Fatigue ‘99
, Beijing, pp.
15
39
.
13.
Bogdanski
,
S.
, and
Trajer
,
M.
, 2005, “
A Dimensionless Multi-Size Finite Element Model of a Rolling Contact Fatigue Crack
,”
Wear
,
258
, pp.
1265
1272
. 0043-1648
14.
Melander
,
A.
, 1997, “
A Finite Element Study of Short Cracks With Different Inclusion Types Under Rolling Contact Fatigue Load
,”
Int. J. Fatigue
0142-1123,
19
(
1
), pp.
13
24
.
15.
Liu
,
Y.
,
Liu
,
L.
, and
Mahadevan
,
S.
, 2007, “
Analysis of Subsurface Crack Propagation Under Rolling Contact Loading in Railroad Wheels Using FEM
,”
Eng. Fract. Mech.
,
74
, pp.
2659
2674
. 0013-7944
16.
Guo
,
Y. B.
, and
Barkey
,
M. E.
, 2004, “
FE-Simulation of the Effects of Machining-Induced Residual Stress Profile on Rolling Contact of Hard Machined Components
,”
Int. J. Mech. Sci.
0020-7403,
46
, pp.
371
388
.
17.
Sraml
,
M.
,
Flasker
,
J.
, and
Potrc
,
I.
, 2003, “
Numerical Procedure for Predicting the Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
0142-1123,
25
, pp.
585
595
.
18.
Ringsberg
,
J. W.
,
Loo-Morrey
,
M.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Beynon
,
J. H.
, 2000, “
Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue
,”
Int. J. Fatigue
0142-1123,
22
, pp.
205
215
.
19.
Ghosh
,
S.
, and
Mallett
,
R. L.
, 1994, “
Voronoi Cell Finite Elements
,”
Compos. Struct.
,
50
, pp.
33
46
. 0263-8223
20.
Ghosh
,
S.
, and
Moorthy
,
S.
, 1995, “
Elastic-Plastic Analysis of Arbitrary Heterogeneous Materials With the Voronoi Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
121
, pp.
373
409
. 0025-6501
21.
Moorthy
,
S.
, and
Ghosh
,
S.
, 1996, “
A Model for Analysis of Arbitrary Composite and Porous Microstructures With Voronoi Cell Finite Elements
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
, pp.
2363
2398
.
22.
Grujicic
,
M.
, and
Zhang
,
Y.
, 1998, “
Determination of Effective Elastic Properties of Functionally Graded Materials Using Voronoi Cell Finite Element Method
,”
Mater. Sci. Eng., A
0921-5093,
251
, pp.
64
76
.
23.
Guo
,
R.
,
Shi
,
H. J.
, and
Yao
,
Z. H.
, 2003, “
Modeling of Interfacial Debonding Crack in Particle Reinforced Composites Using Voronoi Cell Finite Element Method
,”
Comput. Mech.
,
32
, pp.
52
59
. 0178-7675
24.
Vena
,
P.
, and
Gastaldi
,
D.
, 2005, “
A Voronoi Cell Finite Element Model for the Indentation of Graded Ceramic Composites
,”
Composites, Part B
,
36
, pp.
115
126
. 0178-7675
25.
Okabe
,
A.
, and
Boots
,
B.
, 1992,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
New York
.
26.
Moller
,
J.
, 1994,
Lectures Notes on Random Voronoi Tessellations
,
Springer
,
Berlin
.
27.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
1
(
3
), pp.
7
53
.
28.
Raje
,
N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Hoeprich
,
M. R.
, 2008, “
A Numerical Model for Life Scatter in Rolling Element Bearings
,”
ASME J. Tribol.
0742-4787,
130
, pp.
011011
-1–011011-
10
.
29.
Zaretsky
,
E. V.
,
Parker
,
R. J.
, and
Anderson
,
W. J.
, 1969, “
A Study of Residual Stress Induced During Rolling
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
314
319
.
30.
Chen
,
L.
,
Chen
,
Q.
, and
Shao
,
E.
, 1989, “
Study on Initiation and Propagation Angles of Sub-Surface Cracks in GCr15 Bearing Steel Under Rolling Contact
,”
Wear
0043-1648,
133
, pp.
205
218
.
31.
Chen
,
Q.
,
Shao
,
E.
,
Zhao
,
D.
,
Gue
,
J.
, and
Fan
,
Z.
, 1991, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steels
,”
Wear
0043-1648,
147
, pp.
285
294
.
32.
Yoshioka
,
T.
, 1993, “
Detection of Rolling Contact Sub-Surface Fatigue Cracks Using Acoustic Emissions Technique
,”
Lubr. Eng.
0024-7154,
94
(
4
), pp.
303
308
.
33.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
,
Wiley
,
New York
, p.
696
.
You do not currently have access to this content.