In the present work, stepwise erosion technique was carried out to investigate in detail the influence of impact angle on the erosion process of AISI 5117 steel. The number of impact sites and their morphologies at different impact angles were investigated using scanning electron microscope (SEM) examination and image analysis. The tests were carried out with particle concentration of 1 wt. %, and the impact velocity of slurry stream was 15 m/s. Silica sand—which has a nominal size range of 250–355 μm—was used as an erodent, using whirling-arm test rig. The results have shown that the number of craters, as expected, increases with the increase in the mass of erodent for all impact angles and this number decreases with the increase of the impact angle. In addition, the counted number of craters is larger than the calculated number of particles at any stage for all impact angles. This may be explained by the effect of the rebound effect of particles, the irregular shape for these particles, and particle fragmentation. The effect of impact angle based on the impact crater shape can be divided into two regions; the first region for θ ≤ 60 deg and the second region for θ ≥ 75 deg. The shape of the craters is related to the dominant erosion mechanisms of plowing and microcutting in the first region and indentation and lip extrusion in the second region. In the first region, the length of the tracks decreases with the increase of impact angle. The calculated size ranges are from few micrometers to 100 μm for the first region and to 50 μm in the second region. Chipping of the former impact sites by subsequent impact particles plays an important role in developing erosion.

References

1.
Fang
,
O.
,
Sidky
,
P. S.
, and
Hocking
,
M. G.
,
1998
, “
Microripple Formation and Removal Mechanism of Ceramic Materials by Solid-Liquid Slurry Erosion
,”
Wear
,
223
, pp.
93
101
.10.1016/S0043-1648(98)00313-5
2.
Lathabai
,
S.
, and
Pender
,
D. C.
,
1995
, “
Microstructure Influence in Slurry Erosion of Ceramics
,”
Wear
,
189
, pp.
122
135
.10.1016/0043-1648(95)06679-9
3.
Li
,
Y.
,
Burstein
,
G. T.
, and
Hutchings
,
I. M.
,
1995
, “
The Influence of Corrosion on the Erosion of Aluminum by Aqueous Silica Slurries
,”
Wear
,
186-187
, pp.
515
522
.10.1016/0043-1648(95)07181-4
4.
Iwai
,
Y.
, and
Nambu
,
K.
,
1997
, “
Slurry Wear Properties of Pump Lining Materials
,”
Wear
,
210
, pp.
211
219
.10.1016/S0043-1648(97)00055-0
5.
Tsai
,
W.
,
Humphrey
,
J. A. C.
,
Cornet
,
I.
, and
Levy
,
A. V.
,
1981
, “
Experimental Measurement of Accelerated Erosion in a Slurry Pot Tester
,”
Wear
,
68
, pp.
289
303
.10.1016/0043-1648(81)90178-2
6.
Stanisa
,
B.
, and
Ivusic
,
V.
,
1995
, “
Erosion Behaviour and Mechanisms for Steam Turbine Rotor Blades
,”
Wear
,
186-187
, pp.
395
400
.10.1016/0043-1648(95)07136-9
7.
Burstein
,
G. T.
, and
Sasaki
,
K.
,
2000
, “
Effect of Impact Angle on the Slurry Erosion–Corrosion of 304L Stainless Steel
,”
Wear
,
240
, pp.
80
94
.10.1016/S0043-1648(00)00344-6
8.
Oka
,
Y. I.
,
Ohnogi
,
H.
,
Hosokawa
,
T.
, and
Matsumura
,
M.
,
1997
, “
The Impact Angle Dependence of Erosion Damage Caused by Solid Particle Impact
,”
Wear
,
203-204
, pp.
573
579
.10.1016/S0043-1648(96)07430-3
9.
Clark
,
H. M.
, and
Wong
,
K. K.
,
1995
, “
Impact Angle, Particle Energy and Mass Loss in Erosion by Dilute Slurries
,”
Wear
,
186-187
, pp.
454
464
.10.1016/0043-1648(95)07120-2
10.
Fang
,
Q.
,
Xu
,
H.
,
Sidky
,
P. S.
, and
Hocking
,
M. G.
,
1999
, “
Erosion of Ceramics Materials by a Sand/Water Slurry Jet
,”
Wear
,
224
, pp.
183
193
.10.1016/S0043-1648(98)00309-3
11.
Chen
,
K. C.
,
He
,
J. L.
,
Huang
,
W. H.
, and
Yeh
,
T. T.
,
2002
, “
Study on the Solid–Liquid Erosion Resistance of Ion-Nitrided Metal
,”
Wear
,
252
, pp.
580
585
.10.1016/S0043-1648(02)00013-3
12.
Al-bukhaiti
,
M. A.
,
Ahmed
,
S. M.
,
Badran
,
F. M. F.
, and
Emara
,
K. M.
,
2007
, “
Effect of Impact Angle on Slurry Erosion Behavior and Mechanisms of 1017 Steel and High-Chromium White Cast Iron
,”
Wear
,
262
, pp.
1187
1198
.10.1016/j.wear.2006.11.018
13.
Finnie
,
I.
,
1958
, “
The Mechanism of Erosion of Ductile Metals
,”
Proceedings of the Third National Congress on Applied Mechanics
, New York, pp.
527
532
.
14.
Finnie
, I
.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
, pp.
87
103
.10.1016/0043-1648(60)90055-7
15.
Bitter
,
J.
,
1963
, “
A Study of Erosion Phenomena, Part 1
,”
Wear
,
6
, pp.
5
21
.10.1016/0043-1648(63)90003-6
16.
Bitter
,
J.
,
1963
, “
A Study of Erosion Phenomena, Part 2
,”
Wear
,
8
, pp.
161
190
.
17.
Hutchings
, I
. M.
,
1981
, “
A Model for the Erosion of Metals by Spherical Particles at Normal Incidence
,”
Wear
,
70
, pp.
269
281
.10.1016/0043-1648(81)90347-1
18.
Hashish
,
M.
,
1987
, “
An Improved Model of Erosion by Solid Particle Impact
,”
7th International Conference on Erosion by Liquid and Solid Impact
, Cambridge, UK, pp.
461
480
.
19.
Gee
,
M. G.
,
Gee
,
R. H.
, and
McNaught
,
I.
,
2003
, “
Stepwise Erosion as a Method for Determining the Mechanisms of Wear in Gas Borne Particulate Erosion
,”
Wear
,
255
, pp.
44
55
.10.1016/S0043-1648(03)00090-5
20.
Abouel-Kasem
,
A.
,
Abd-Elrhman
,
Y. M.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2010
, “
Design and Performance of Slurry Erosion Tester
,”
ASME J. Tribol.
,
132
(
2
), p.
021601
.10.1115/1.4001449
21.
Abouel-Kasem
,
A.
,
Al-Bukhaiti
,
M. A.
,
Ahmed
,
S. M.
, and
Emara
,
K. M.
,
2009
, “
Fractal Characterization of Slurry Eroded Surfaces at Different Impact Angles
,”
ASME J. Tribol.
,
131
(
3
), p.
031601
.10.1115/1.3118784
22.
Gesellschaft, B.
,
2000
,
Special Steel Manual
,
A-8605 M.B.H. Co., Kapfenberg
,
Germany
, pp.
90
98
.
23.
Abouel-Kasem
,
A.
,
2011
, “
Particle Size Effects on Slurry Erosion of 5117 Steels
,”
ASME J. Tribol.
,
133
(
1
), p.
014502
.10.1115/1.4002605
24.
Stack
,
M. M.
,
Corlett
,
N.
, and
Zhou
,
S.
,
1998
, “
Some Thoughts on Effect of Elastic Rebounds on the Boundaries of the Aqueous Erosion – Corrosion
,”
Wear
,
214
, pp.
175
185
.10.1016/S0043-1648(97)00243-3
25.
Tilly
,
G. P.
,
1973
, “
A Two Stage Mechanism of Ductile Erosion
,”
Wear
,
23
, pp.
87
96
.10.1016/0043-1648(73)90044-6
26.
Clark
,
H. C.
,
1992
, “
The Influence of Flow Field in Slurry Erosion
,”
Wear
,
152
, pp.
223
240
.10.1016/0043-1648(92)90122-O
27.
Hassan
,
M. A.
,
El-Sharief
,
M. A.
,
Abouel-Kasem
,
A.
,
Ramesh
,
S.
, and
Purbolaksono
,
J.
,
2012
, “
A Fuzzy Model for Evaluation and Prediction of Slurry Erosion of 5127 Steels
,”
Mater. Des.
,
39
, pp.
186
191
.10.1016/j.matdes.2012.02.012
You do not currently have access to this content.