Effects of groove textures on the performances for gaseous bubbles in the lubricant used for a textured journal bearing is studied under the consideration of thermal effect of lubricant. The Reynolds, energy, and Rayleigh–Plesset (RP) equations are solved simultaneously for simulating the behavior of the bubble. Numerical results show that the gaseous bubble radius shows a nonlinearly oscillation in a full cycle period, and high bubble pressure and temperature appear when the bubble collapses. Moreover, appropriately choosing groove length, width, or interval can reduce the maximum radius, collapse pressure, and collapse temperature of the bubble. There exists a critical groove depth minimizing the bubble pressure and temperature.
Issue Section:
Hydrodynamic Lubrication
References
1.
Olver
, A. V.
, Fowell
, M. T.
, Spikes
, H. A.
, and Pegg
, I. G.
, 2006
, “'Inlet Suction: A Load Support Mechanism in Non-Convergent, Pocketed, Hydrodynamic Bearings
,” Proc. Inst. Mech. Eng., Part J
, 220
(2
), pp. 105
–108
.2.
Meng
, F. M.
, Wang
, W. Z.
, Hu
, Y. Z.
, and Wang
, H.
, 2007
, “Numerical Analysis of Combined Influences of Inter-Asperity Cavitation and Elastic Deformation on Flow Factors
,” Proc. Inst. Mech. Eng., Part C
, 221
(7
), pp. 815
–827
.3.
Meng
, F. M.
, Cen
, S. Q.
, Hu
, Y. Z.
, and Wang
, H.
, 2009
, “On Elastic Deformation, Inter-Asperity Cavitation and Lubricant Thermal Effects on Flow Factors
,” Tribol. Int.
, 42
(2
), pp. 260
–274
.4.
Shi
, X.
, and Ni
, T.
, 2011
, “Effects of Groove Textures on Fully Lubricated Sliding With Cavitation
,” Tribol. Int.
, 44
(12
), pp. 2022
–2028
.5.
Qiu
, Y.
, and Khonsari
, M. M.
, 2011
, “Experimental Investigation of Tribological Performance of Laser Textured Stainless Steel Rings
,” Tribol. Int.
, 44
(5
), pp. 635
–644
.6.
Zhang
, J.
, and Meng
, Y.
, 2012
, “Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces
,” Tribol. Lett.
, 46
(2
), pp. 147
–158
.7.
Shen
, C.
, and Khonsari
, M. M.
, 2013
, “On the Magnitude of Cavitation Pressure of Steady-State Lubrication
,” Tribol. Lett.
, 51
(1
), pp. 153
–160
.8.
Meng
, F. M.
, and Yang
, T.
, 2013
, “Preliminary Study on Mechanism of Cavitation in Lubricant of Textured Sliding Bearing
,” Proc. Inst. Mech. Eng. Part J
, 227
(7
), pp. 695
–708
.9.
Wang
, L. L.
, Lu
, C. H.
, and Ge
, P. Q.
, 2014
, “Theoretical and Experimental Study on the Cavitation Mechanism of a Low Viscosity Spiral Oil Wedge Journal Bearing
,” Proc. Inst. Mech. Eng., Part J
, 228
(9
), pp. 947
–954
.10.
Elrod
, H.
, 1981
, “A Cavitation Algorithm
,” ASME J. Lubr. Technol.
, 103
(3
), pp. 350
–354
.11.
Ausas
, R.
, Ragot
, P.
, Leiva
, J.
, Jai
, M.
, Bayada
, G.
, and Buscaglia
, G. C.
, 2007
, “The Impact of the Cavitation Model in the Analysis of Microtextured Lubricated Journal Bearings
,” ASME J. Tribol.
, 129
(4
), pp. 868
–875
.12.
Bayada
, G.
, and Chupin
, L.
, 2013
, “Compressible Fluid Model for Hydrodynamic Lubrication Cavitation
,” ASME J. Tribol.
, 135
(4
), p. 041702
.13.
Grandoa
, F. P.
, Priesta
, M.
, and Prata
, A. T.
, 2006
, “A Two-Phase Flow Approach to Cavitation Modelling in Journal Bearings
,” Tribol. Lett.
, 21
(3
), pp. 233
–244
.14.
Plesset
, M. S.
, and Prosperetti
, A.
, 1977
, “Bubble Dynamics and Cavitation
,” Ann. Rev. Fluid Mech.
, 9
(1
), pp. 145
–185
.15.
Hilgenfeldt
, S.
, Brenner
, M. P.
, Grossmann
, S.
, and Lohse
, D.
, 1998
, “Analysis of Rayleigh-Plesset Dynamics for Sonoluminescing Bubbles
,” J. Fluid Mech.
, 365
, pp. 171
–204
.16.
Katerina
, F.
, Vlasis
, G. M.
, and John
, T.
, 2004
, “Numerical Simulation of Bubble Growth in Newtonian and Viscoelastic Filaments Undergoing Stretching
,” J. Non-Newton Fluid Mech.
, 122
(1–3
), pp. 177
–200
.17.
Qin
, Z.
, Bremhorst
, K.
, Alehossein
, H.
, and Meyer
, T.
, 2007
, “Simulation of Cavitation Bubbles in a Convergent-Divergent Nozzle Water Jet
,” J. Fluid Mech.
, 573
, pp. 1
–25
.18.
Wang
, H.
, and Zhu
, B.
, 2010
, “Numerical Prediction of Impact Force in Cavitating Flows
,” ASME J. Fluids Eng.
, 132
(10
), p. 101301
.19.
Abdel-Maksoud
, M.
, Hanel
, D.
, and Lantermann
, U.
, 2010
, “Modeling and Computation of Cavitation in Vortical Flow
,” Int. J. Heat Fluid Flow
, 31
(6
), pp. 1065
–1074
.20.
Someya
, T.
, 2003
, “On the Development of Negative Pressure in Oil Film and the Characteristics of Journal Bearing
,” Meccanica
, 38
(6
), pp. 643
–658
.21.
Gehannin
, J.
, Arghir
, M.
, and Bonneau
, O.
, 2009
, “Evaluation of Rayleigh-Plesset Equation Based Cavitation Models for Squeeze Film Dampers
,” ASME J. Tribol.
, 131
(2
), p. 024501
.22.
Geike
, T.
, and Popov
, V.
, 2009
, “Cavitation Within the Framework of Reduced Description of Mixed Lubrication
,” Tribol. Int.
, 42
(1
), pp. 93
–98
.23.
Boedo
, S.
, and Booker
, J. F.
, 1995
, “Cavitation in Normal Separation of Square and Circular Plates
,” ASME J. Tribol.
, 117
(3
), pp. 403
–409
.24.
Zhang
, Z. M.
, Zhang
, Y. Y.
, Xie
, Y. B.
, Cheng
, Z. X.
, Qiu
, D. M.
, and Zhu
, J.
, 1986
, Fluid Lubrication Theory for Sliding Bearings
, Higher Education Press
, Beijing
, China
.25.
Li
, L.
, He
, Y.
, Wu
, Y. X.
, and Zou
, W. H.
, 2013
, “Experimental Measurements and Correlations Isobaric Vapor-Liquid Equilibrium for Water Plus Acetic Acid Plus Sec-butyl Acetate at 101.3 kPa
,” Chin. J. Chem. Eng.
, 21
(7
), pp. 759
–765
.26.
Yang
, P. R.
, 1998
, Numerical Analysis of Fluid Lubrication
, National Defense Industry Press
, Beijing, China
.27.
Etsion
, I.
, and Ludwig
, L. P.
, 1982
, “Observation of Pressure Variation in the Cavitation Region of Submerged Journal Bearings
,” ASME J. Lubr. Technol.
, 104
(2
), pp. 157
–163
.Copyright © 2017 by ASME
You do not currently have access to this content.