This study aims to reveal the roles and mechanisms of Al2O3/TiO2 hybrid nanoparticles into the lube oils which could reinforce engine components durability via reducing the friction, wear, or fuel economy in automotive engines. The tribological tests were carried out under different sliding speeds from 0.21 to 1.75 m/s and loads from 30 to 250 N using a reciprocating tribometer to simulate the ring/liner interface in the engine according to ASTM G181. The tribological results using hybrid nanolubricants suggested that the friction coefficient and wear rate of the ring decreased in the ranges 39–53% and 25–33%, respectively, compared to nanoparticles-free lube oil. The combined evidence of the worn surfaces analysis confirmed that the key mechanisms in antifriction and antiwear are a combination of the nanoparticles rolling mechanism and the replenishment mechanism of tribofilms on the sliding contact interfaces. In addition, a tribofilm formed on the rubbing surfaces is not only from the nanoparticles but also from Fe which is formed as a result of iron debris particles and oil additive package such as P and S originating from zinc dialkyldithiophosphate.

References

1.
Qu
,
J.
,
Blau
,
P. J.
,
Dai
,
S.
,
Luo
,
H.
, and
Meyer
,
H. M.
, III
,
2009
, “
Ionic Liquids as Novel Lubricants and Additives for Diesel Engine Applications
,”
Tribol. Lett.
,
35
(
3
), pp.
181
189
.
2.
Ali
,
M. K. A.
, and
Xianjun
,
H.
,
2015
, “
Improving the Tribological Behavior of Internal Combustion Engines Via the Addition of Nanoparticles to Engine Oils
,”
Nanotechnol. Rev.
,
4
(
4
), pp.
347
358
.
3.
Qu
,
J.
,
Barnhill
,
W. C.
,
Luo
,
H.
,
Meyer
,
H. M.
,
Leonard
,
D. N.
,
Landauer
,
A. K.
,
Kheireddin
,
B.
,
Gao
,
H.
,
Papke
,
B. L.
, and
Dai
,
S.
,
2015
, “
Synergistic Effects Between Phosphonium‐Alkylphosphate Ionic Liquids and Zinc Dialkyldithiophosphate (ZDDP) as Lubricant Additives
,”
Adv. Mater.
,
27
(
32
), pp.
4767
4774
.
4.
Blau
,
P. J.
,
2002
, “
A Review of Sub-Scale Test Methods to Evaluate the Friction and Wear of Ring and Liner Materials for Spark-and Compression Ignition Engines
,” ORNL Oak Ridge National Laboratory, Oak Ridge, TN,
Report
.
5.
Zabala
,
B.
,
Igartua
,
A.
,
Fernández
,
X.
,
Priestner
,
C.
,
Ofner
,
H.
,
Knaus
,
O.
,
Abramczuk
,
M.
,
Tribotte
,
P.
,
Girot
,
F.
, and
Roman
,
E.
,
2017
, “
Friction and Wear of a Piston Ring/Cylinder Liner at the Top Dead Centre: Experimental Study and Modelling
,”
Tribol. Int.
,
106
, pp.
23
33
.
6.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Turkson
,
R. F.
,
Peng
,
Z.
, and
Chen
,
X.
,
2016
, “
Enhancing the Thermophysical Properties and Tribological Behaviour of Engine Oils Using Nano-Lubricant Additives
,”
RSC Adv.
,
6
(
81
), pp.
77913
77924
.
7.
Lee
,
K.
,
Hwang
,
Y.
,
Cheong
,
S.
,
Choi
,
Y.
,
Kwon
,
L.
,
Lee
,
J.
, and
Kim
,
S. H.
,
2009
, “
Understanding the Role of Nanoparticles in Nano-Oil Lubrication
,”
Tribol. Lett.
,
35
(
2
), pp.
127
1231
.
8.
Ali
,
M. K. A.
,
Fuming
,
P.
,
Younus
,
H. A.
,
Abdelkareem
,
M. A. A.
,
Essa
,
F. A.
,
Elagouz
,
A.
, and
Xianjun
,
H.
,
2018
, “
Fuel Economy in Gasoline Engines Using Al2O3/TiO2 Nanomaterials as Nanolubricant Additives
,”
Appl. Energy
,
211
, pp.
461
478
.
9.
Ali
,
M. K. A.
,
Abdelkareem
,
M. A.
,
Elagouz
,
A.
,
Essa
,
F.
, and
Xianjun
,
H.
,
2017
, “
Mini Review on the Significance Nano-Lubricants in Boundary Lubrication Regime
,”
Int. J. Biosen. Bioelectron.
,
2
(2), p. 00014.
10.
Alahmer
,
A.
,
2013
, “
Influence of Using Emulsified Diesel Fuel on the Performance and Pollutants Emitted From Diesel Engine
,”
Energy. Convers. Manage.
,
73
, pp.
361
369
.
11.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Elagouz
,
A.
,
Essa
,
F. A.
, and
Abdelkareem
,
M. A. A.
,
2016
, “
Minimizing of the Boundary Friction Coefficient in Automotive Engines Using Al2O3 and Tio2 Nanoparticles
,”
J. Nanopart. Res.
,
18
(
12
), p.
377
.
12.
Yu
,
H. L.
,
Yi
,
X.
,
Shi
,
P. J.
,
Xu
,
B. S.
,
Wang
,
X. L.
, and
Qian
,
L.
,
2008
, “
Tribological Properties and Lubricating Mechanisms of Cu Nanoparticles in Lubricant
,”
T. Nonferr. Met. Soc.
,
18
(
3
), pp.
636
641
.
13.
Guo
,
D.
,
Xie
,
G.
, and
Luo
,
J.
,
2013
, “
Mechanical Properties of Nanoparticles: Basics and Applications
,”
J. Phys. D.: Appl. Phys.
,
47
(
1
), p.
013001
.
14.
Tevet
,
O.
,
Von-Huth
,
P.
,
Popovitz-Biro
,
R.
,
Rosentsveig
,
R.
,
Wagner
,
H. D.
, and
Tenne
,
R.
,
2011
, “
Friction Mechanism of Individual Multilayered Nanoparticles
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
50
), pp.
19901
19906
.
15.
Kato
,
H.
, and
Komai
,
K.
,
2007
, “
Tribofilm Formation and Mild Wear by Tribo-Sintering of Nanometer-Sized Oxide Particles on Rubbing Steel Surfaces
,”
Wear
,
262
(
1–2
), pp.
36
41
.
16.
Bhushan
,
B.
,
Israelachvili
,
J. N.
, and
Landman
,
U.
,
1995
, “
Nanotribology: Friction, Wear and Lubrication at the Atomic Scale
,”
Nature
,
374
(
6523
), pp.
607
613
.
17.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Turkson
,
R. F.
, and
Ezzat
,
M.
,
2016
, “
An Analytical Study of Tribological Parameters Between Piston Ring and Cylinder Liner in Internal Combustion Engines
,”
Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn.
,
230
(
4
), pp.
329
349
.
18.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Bicheng
,
C.
,
Turkson
,
R. F.
, and
Qingping
,
C.
,
2016
, “
Reducing Frictional Power Losses and Improving the Scuffing Resistance in Automotive Engines Using Hybrid Nanomaterials as Nano-Lubricant Additives
,”
Wear
,
364–365
, pp.
270
281
.
19.
Shen
,
M.
,
Luo
,
J.
, and
Wen
,
S.
,
2001
, “
The Tribological Properties of Oils Added With Diamond Nano-Particles
,”
Tribol. Trans.
,
44
(
3
), pp.
494
8
.
20.
Shahmohamadi
,
H.
,
Rahmani
,
R.
,
Rahnejat
,
H.
,
Garner
,
C. P.
, and
Balodimos
,
N.
,
2017
, “
Thermohydrodynamics of Lubricant Flow With Carbon Nanoparticles in Tribological Contacts
,”
Tribol. Int.
,
113
, pp.
50
57
.
21.
Chinas-Castillo
,
F.
, and
Spikes
,
H.
,
2003
, “
Mechanism of Action of Colloidal Solid Dispersions
,”
ASME J. Tribol.
,
125
(
3
), pp.
552
557
.
22.
Konicek
,
A. R.
,
Jacobs
,
P. W.
,
Webster
,
M. N.
, and
Schilowitz
,
A. M.
,
2016
, “
Role of Tribofilms in Wear Protection
,”
Tribol. Int.
,
94
, pp.
14
19
.
23.
Ali
,
M. K. A.
,
Xianjun
,
H.
,
Mai
,
L.
,
Qingping
,
C.
,
Turkson
,
R. F.
, and
Bicheng
,
C.
,
2016
, “
Improving the Tribological Characteristics of Piston Ring Assembly in Automotive Engines Using Al2O3 and TiO2 Nanomaterials as Nano-Lubricant Additives
,”
Tribol. Int.
,
103
, pp.
540
554
.
24.
Hsu
,
S. M.
, and
Gates
,
R.
,
2005
, “
Boundary Lubricating Films: Formation and Lubrication Mechanism
,”
Tribol. Int.
,
38
(
3
), pp.
305
312
.
25.
Lancaster
,
J.
,
1967
, “
The Influence of Substrate Hardness on the Formation and Endurance of Molybdenum Disulphide Films
,”
Wear
,
10
(
2
), pp.
103
117
.
26.
Turkson, R. F., Yan, F., Ali, M. K. A., Liu, B., and Hu, J., 2016, “
Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions Via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm
,”
Sustainability
,
8
(1), p. 72.
27.
Gustavsson
,
F.
, and
Jacobson
,
S.
,
2016
, “
Diverse Mechanisms of Friction Induced Self-Organisation Into a Low-Friction Material–An Overview of WS2 Tribofilm Formation
,”
Tribol. Int.
,
101
, pp.
340
347
.
28.
Jiang
,
J.
,
Stott
,
F.
, and
Stack
,
M.
,
1998
, “
The Role of Triboparticulates in Dry Sliding Wear
,”
Tribol. Int.
,
31
(
5
), pp.
245
256
.
29.
Kim
,
B.
,
Mourhatch
,
R.
, and
Aswath
,
P. B.
,
2010
, “
Properties of Tribofilms Formed With Ashless Dithiophosphate and Zinc Dialkyl Dithiophosphate Under Extreme Pressure Conditions
,”
Wear
,
268
(
3–4
), pp.
579
591
.
30.
Elsheikh
,
A. H.
,
Sharshir
,
S. W.
,
Mostafa
,
M. E.
,
Essa
,
F. A.
, and
Ali
,
M. K. A.
,
2018
, “
Applications of Nanofluids in Solar Energy: A Review of Recent Advances
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
3483
3502
.
31.
Fangsuwannarak
,
K.
, and
Triratanasirichai
,
K.
,
2013
, “
Improvements of Palm Biodiesel Properties by Using Nano-TiO2 Additive, Exhaust Emission and Engine Performance
,”
Rom. Rev. Precis. Mech. Opt. Mechatron
,
43
, pp.
111
118
.
32.
Sarkar
,
J.
,
Ghosh
,
P.
, and
Adil
,
A.
,
2015
, “
A Review on Hybrid Nanofluids: Recent Research, Development and Applications
,”
Renewable Sustainable Energy Rev.
,
43
, pp.
164
177
.
33.
Khond
,
V. W.
, and
Kriplani
,
V.
,
2016
, “
Effect of Nanofluid Additives on Performances and Emissions of Emulsified Diesel and Biodiesel Fueled Stationary Ci Engine: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
1338
1348
.
34.
Ichikawa
,
S.
,
1997
, “
Photoelectrocatalytic Production of Hydrogen From Natural Seawater Under Sunlight
,”
Int. J. Hydrogen Energy
,
22
(
7
), pp.
675
678
.
35.
Khalife
,
E.
,
Tabatabaei
,
M.
,
Demirbas
,
A.
, and
Aghbashlo
,
M.
,
2017
, “
Impacts of Additives on Performance and Emission Characteristics of Diesel Engines During Steady State Operation
,”
Prog. Energy Combust.
,
59
, pp.
32
78
.
36.
Shaafi
,
T.
,
Sairam
,
K.
,
Gopinath
,
A.
,
Kumaresan
,
G.
, and
Velraj
,
R.
,
2015
, “
Effect of Dispersion of Various Nanoadditives on the Performance and Emission Characteristics of a Ci Engine Fuelled With Diesel, Biodiesel and Blends—A Review
,”
Renewable Sustainable Energy Rev.
,
49
, pp.
563
573
.
37.
Irfan
,
M.
,
Ahmad
,
T.
,
Moniruzzaman
,
M.
,
Bhattacharjee
,
S.
, and
Abdullah
,
B.
,
2017
, “
Size and Stability Modulation of Ionic Liquid Functionalized Gold Nanoparticles Synthesized Using Elaeis Guineensis (Oil Palm) Kernel Extract
,”
Arabian J. Chem.
, in press.
38.
Morina
,
A.
,
Lee
,
P.
,
Priest
,
M.
, and
Neville
,
A.
,
2011
, “
Challenges of Simulating ‘Fired Engine' Ring-Liner Oil Additive/Surface Interactions in Ring-Liner Bench Tribometer
,”
Tribol.-Mater., Surf. Interfaces
,
5
(
1
), pp.
25
33
.
39.
Moore
,
S.
, and
Hamilton
,
G.
,
1978
, “
The Starved Lubrication of Piston Rings in a Diesel Engine
,”
J. Mech. Eng. Sci.
,
20
(
6
), pp.
345
352
.
40.
Truhan
,
J. J.
,
Qu
,
J.
, and
Blau
,
P. J.
,
2005
, “
A Rig Test to Measure Friction and Wear of Heavy Duty Diesel Engine Piston Rings and Cylinder Liners Using Realistic Lubricants
,”
Tribol. Int.
,
38
(
3
), pp.
211
218
.
41.
Zhao
,
B.
,
Dai
,
X.-D.
,
Zhang
,
Z. N.
, and
Xie
,
Y. B.
,
2016
, “
A New Numerical Method for Piston Dynamics and Lubrication Analysis
,”
Tribol. Int.
,
94
, pp.
395
408
.
42.
Craciun
,
A.
,
Gallani
,
J.
, and
Rastei
,
M.
,
2016
, “
Stochastic Stick–Slip Nanoscale Friction on Oxide Surfaces
,”
Nanotechnology
,
27
(
5
), p.
055402
.
43.
Alazemi
,
A. A.
,
Etacheri
,
V.
,
Dysart
,
A. D.
,
Stacke
,
L.-E.
,
Pol
,
V. G.
, and
Sadeghi
,
F.
,
2015
, “
Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction
,”
ACS Appl. Mater. Inter.
,
7
(
9
), pp.
5514
5521
.
44.
Stott
,
F. H.
,
1998
, “
The Role of Oxidation in the Wear of Alloys
,”
Tribol. Int.
,
31
(
1–3
), pp.
61
71
.
45.
Gara
,
L.
, and
Zou
,
Q.
,
2013
, “
Friction and Wear Characteristics of Oil-Based Zno Nanofluids
,”
Tribol. Trans.
,
56
(
2
), pp.
236
244
.
46.
Ingole
,
S.
,
Charanpahari
,
A.
,
Kakade
,
A.
,
Umare
,
S. S.
,
Bhatt
,
D. V.
, and
Menghani
,
J.
,
2013
, “
Tribological Behavior of Nano TiO2 as an Additive in Base Oil
,”
Wear
,
301
(
1–2
), pp.
776
785
.
47.
Luo
,
T.
,
Wei
,
X.
,
Huang
,
X.
,
Huang
,
L.
, and
Yang
,
F.
,
2014
, “
Tribological Properties of Al2O3 Nanoparticles as Lubricating Oil Additives
,”
Ceram. Int.
,
40
(
5
), pp.
7143
7149
.
48.
Xia
,
W.
,
Zhao
,
J.
,
Wu
,
H.
,
Jiao
,
S.
,
Zhao
,
X.
,
Zhang
,
X.
,
Xu
,
J.
, and
Jiang
,
Z.
,
2018
, “
Analysis of Oil-in-Water Based Nanolubricants With Varying Mass Fractions of Oil and TiO2 Nanoparticles
,”
Wear
,
396–397
, pp.
162
171
.
49.
Wu
,
H.
,
Zhao
,
J.
,
Cheng
,
X.
,
Xia
,
W.
,
He
,
A.
,
Yun
,
J. H.
,
Huang
,
S.
,
Wang
,
L.
,
Huang
,
H.
,
Jiao
,
S.
, and
Jiang
,
Z.
,
2018
, “
Friction and Wear Characteristics of TiO2 Nano-Additive Water-Based Lubricant on Ferritic Stainless Steel
,”
Tribol. Int.
,
117
, pp.
24
38
.
50.
Gulzar
,
M.
,
Masjuki
,
H.
,
Kalam
,
M.
,
Varman
,
M.
,
Zulkifli
,
N.
,
Mufti
,
R.
,
Zahid
,
R.
, and
Yunus
,
R.
,
2017
, “
Dispersion Stability and Tribological Characteristics of TiO2/SiO2 Nanocomposite-Enriched Biobased Lubricant
,”
Tribol. Trans.
,
60
(
4
), pp.
670
680
.
51.
Dong
,
H.
, and
Bell
,
T.
,
2000
, “
Enhanced Wear Resistance of Titanium Surfaces by a New Thermal Oxidation Treatment
,”
Wear
,
238
(
2
), pp.
131
137
.
52.
Sun
,
J.
, and
Simon
,
S.
,
2007
, “
The Melting Behavior of Aluminum Nanoparticles
,”
Thermochim. Acta.
,
463
(
1–2
), pp.
32
40
.
You do not currently have access to this content.