To describe the dynamic evolutionary law and tribological behavior of the tribopair AISI 52100-AISI 1045, rotational experiments were conducted by sliding a disk against a static pin. The multidimensional phase spaces were reconstructed based on the scalar time-series by the time-delay embedding technique, and the multivariate graph-based method was used to visualize the overall picture of the phase space. The evolution of radar plots and the corresponding multivariate graph centrobaric trajectory (MGCT) is consistent with the description of “running-in, steady-state and increasing friction stages,” and can serve as effective indicators for the friction state transitions. Results show that the radar plot can inform quantitative interpretations of friction process identification. Therefore, the multivariate graph-based method is a useful approach to characterize the nonlinear dynamics of tribological behaviors.

References

1.
Foxrabinovich
,
G. S.
,
Gershman
,
I. S.
,
Yamamoto
,
K.
,
Biksa
,
A.
,
Veldhuis
,
S. C.
,
Beake
,
B. D.
, and
Kovalev
,
A. I.
,
2010
, “
Self-Organization During Friction in Complex Surface Engineered Tribosystems
,”
Entropy
,
12
(
2
), pp.
275
288
.
2.
Mortazavi
,
V.
,
Menezes
,
P. L.
, and
Nosonovsky
,
M.
,
2011
, “
Studies of Shannon Entropy Evolution Due to Self-Organization During the Running-In
,”
ASME
Paper No. IJTC2011-61231.
3.
Zhu
,
H.
,
Ge
,
S. R.
,
Li
,
G.
, and
Lv
,
L.
,
2007
, “
Test of Running-In Process and Preliminary Analysis of Running-In Attractors
,”
Lubr. Eng.
,
1
, pp.
1
3
.
4.
Sun
,
D.
,
Li
,
G. B.
,
Wei
,
H. J.
, and
Liao
,
H. F.
,
2015
, “
Experimental Study on the Chaotic Attractor Evolvement of the Friction Vibration in a Running-In Process
,”
Tribol. Int.
,
88
, pp.
290
297
.
5.
Zhou
,
Y. K.
,
Zhu
,
H.
,
Zuo
,
X.
,
Li
,
Y.
, and
Chen
,
N.
,
2015
, “
The Nonlinear Nature of Friction Coefficient in Lubricated Sliding Friction
,”
Tribol. Int.
,
88
, pp.
8
16
.
6.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Zhou
,
Y. K.
, and
Zuo
,
X.
, 2018, “
Chaotic Characteristics and Attractor Evolution of Friction Noise During Friction Process
,”
Friction
,
6
(
1
), pp.
47
61
.
7.
Urbakh
,
M.
,
Klafter
,
J.
,
Gourdon
,
D.
, and
Israelachvili
,
J.
,
2004
, “
The Nonlinear Nature of Friction
,”
Nature
,
430
(
6999
), pp.
525
528
.
8.
Paul
,
D.
, and
Johnstone
,
I. M.
,
2012
, “
Augmented Sparse Principal Component Analysis for High Dimensional Data
,” preprint
arXiv: 1202-1242
.https://arxiv.org/abs/1202.1242
9.
Marwan
,
N.
,
Kurths
,
J.
, and
Saparin
,
P.
,
2007
, “
Generalised Recurrence Plot Analysis for Spatial Data
,”
Phys. Lett. A.
,
360
(
4–5
), pp.
545
551
.
10.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.
11.
Oberst
,
S.
, and
Lai
,
J. C. S.
,
2011
, “
Chaos in Brake Squeal Noise
,”
J. Sound. Vib.
,
330
(
5
), pp.
955
975
.
12.
Nichols
,
J. M.
,
Trickey
,
S. T.
, and
Seaver
,
M.
,
2006
, “
Damage Detection Using Multivariate Recurrence Quantification Analysis
,”
Mech. Syst. Signal Process.
,
20
(
2
), pp.
421
437
.
13.
Gao
,
J. B.
,
Sultan
,
H.
,
Hu
,
J.
, and
Tung
,
W. W.
,
2009
, “
Denoising Nonlinear Time Series by Adaptive Filtering and Wavelet Shrinkage: A Comparison
,”
IEEE Signal Proc. Lett.
,
17
(
3
), pp.
237
240
.
14.
Mosley
,
H.
, and
Mayer
,
A.
,
1999
, “
Benchmarking National Labour Market Performance: A Radar Chart Approach
,” WZB Discussion Paper, Research Unit: Labor Market Policy and Employment FS I 99-202, WZB Berlin Social Science Center, Berlin.
15.
Liu
,
W. Y.
,
Li
,
F.
,
Wang
,
B. W.
, and
Hong
,
W. X.
, 2010 “
Visualization Classification Method of Multi-Dimensional Data Based on Radar Chart Mapping
,”
Syst. Eng.-Theory & Practice
,
30
(
1
), pp.
857
862
.
16.
Boeing
,
G.
,
2017
, “
Visual Analysis of Nonlinear Dynamical Systems: Chaos, Fractals, Self-Similarity and the Limits of Prediction
,”
Soc. Sci. Electron. Publishing
,
4
(
4
), p.
37
.
17.
Saary
,
M. J.
,
2008
, “
Radar Plots: A Useful Way for Presenting Multivariate Health Care Data
,”
J. Clin. Epidemiol.
,
61
(
4
), pp.
311
317
.
18.
Zhao
,
J. Y.
, and
Jin
,
N. D.
,
2012
, “
Dynamic Characteristics of Multivariate Graph Centrobaric Trajectory in Phase Space of Two-Phase Flow
,”
Acta. Phys. Sin.
,
61
(
9
), pp.
1321
1323
.
19.
Xiao
,
N.
, and
Jin
,
N. D.
,
2007
, “
Research on Flow Pattern Classification Method of Two Phase Flow Based on Chaotic Attractor Morphological Characteristic
,”
Acta. Phys. Sin.
,
56
(
9
), pp.
5149
5157
.http://wulixb.iphy.ac.cn/EN/abstract/abstract13297.shtml
20.
Fraser
,
A. M.
, and
Swinney
,
H. L.
,
1986
, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
(
2
), p.
1134
.
21.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D. I.
,
1992
, “
Determining Minimum Embedding Dimension Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
You do not currently have access to this content.