Abstract

The metal matrix composites combine the metallic properties of a tough and ductile matrix with properties of reinforcement particles, simultaneously develop the functional properties by proper selection of reinforcements for projected applications. However, hard ceramics reinforcements decrease toughness and ductility of soft matrix and restrict their wide applications. The surface metal matrix composites (SMMCs) preserve the matrix properties with added advanced surface properties by reinforcing particles only in the surface layer. The hybrid surface metal matrix composites (HSMMCs) with more than one reinforcement gained attention in material processing due to their noble tribological behavior and surface properties, which cannot be attained in mono composites. Conventional liquid-phase processing techniques to fabricate hybrid surface composites result in the formation of undesirable brittle compounds, detrimental to desirable properties of composites. Friction stir processing (FSP), a solid-state processing technique, has been used by many investigators using different reinforcements to fabricate mono as well as hybrid surface composites. Friction stir processed (FSPed) hybrid surface composites have not been extensively reviewed. The current review provides a comprehensive understanding of the latest developments of FSP in hybrid surface composites manufacturing. This paper review different reinforcement strategies in the fabrication of FSPed hybrid surface composites and also the effects of single-pass, multipass, and change in pass direction on microstructure and resultant properties. Finally, future directions and challenges to FSPed hybrid surface composites are summarized. This review article containing important information on hybrid surface composites fabrication by FSP will be useful to academicians and investigators in the field.

References

1.
Bhoi
,
N. K.
,
Singh
,
H.
, and
Pratap
,
S.
,
2020
, “
Developments in the Aluminum Metal Matrix Composites Reinforced by Micro/Nano Particles–A Review
,”
J. Compos. Mater.
,
54
(
6
), pp.
813
833
.
2.
Sharma
,
D. K.
,
Mahant
,
D.
, and
Upadhyay
,
G.
,
2020
, “
Manufacturing of Metal Matrix Composites: A State of Review
,”
Mater. Today: Proc.
,
26
, pp.
506
519
.
3.
Kannan
,
C.
, and
Ramanujam
,
R.
,
2017
, “
Comparative Study on the Mechanical and Microstructural Characterisation of AA 7075 Nano and Hybrid Nanocomposites Produced by Stir and Squeeze Casting
,”
J. Adv. Res.
,
8
(
4
), pp.
309
319
. 10.1016/j.jare.2017.02.005
4.
Lorenzo-Martin
,
M. C.
, and
Ajayi
,
O. O.
,
2014
, “
Surface Layer Modification of 6061 Al Alloy by Friction Stir Processing and Second Phase Hard Particles for Improved Friction and Wear Performance
,”
ASME J. Tribol.
,
136
(
4
), p.
044501
. 10.1115/1.4027860
5.
Mishra
,
R. S.
, and
Ma
,
Z.
,
2005
, “
Friction Stir Welding and Processing
,”
Adv. Mater. Sci. Eng. R: Rep.
,
50
(
1–2
), pp.
1
78
. 10.1016/j.mser.2005.07.001
6.
Pantelis
,
D.
,
Tissandier
,
A.
,
Manolatos
,
P.
, and
Ponthiaux
,
P.
,
1995
, “
Formation of Wear Resistant Al–SiC Surface Composite by Laser Melt–Particle Injection Process
,”
Mater. Sci. Technol.
,
11
(
3
), pp.
299
303
. 10.1179/mst.1995.11.3.299
7.
Sharma
,
D. K.
,
Sharma
,
M.
, and
Upadhyay
,
G.
,
2019
, “
Boron Carbide (B4C) Reinforced Aluminum Matrix Composites (AMCs)
,”
Int. J. Innovative Technol. Exploring Eng.
,
9
(
1
), pp.
2194
2203
. 10.35940/ijitee.A4766.119119
8.
Singh
,
H.
,
Kumar
,
D.
, and
Singh
,
H.
,
2020
, “
Development of Magnesium-Based Hybrid Metal Matrix Composite Through in Situ Micro, Nano Reinforcements
,”
J. Compos. Mater.
,
55
(
1
), pp.
109
133
.
9.
Meng
,
C.
,
Cui
,
H.-c.
,
Lu
,
F.-g.
, and
Tang
,
X.-h.
,
2013
, “
Evolution Behavior of TiB2 Particles During Laser Welding on Aluminum Metal Matrix Composites Reinforced With Particles
,”
Trans. Nonferrous Met. Soc. China
,
23
(
6
), pp.
1543
1548
. 10.1016/S1003-6326(13)62628-X
10.
Mishra
,
R. S.
,
Ma
,
Z.
, and
Charit
,
I.
,
2003
, “
Friction Stir Processing: a Novel Technique for Fabrication of Surface Composite
,”
Mater. Sci. Eng. A
,
341
(
1–2
), pp.
307
310
. 10.1016/S0921-5093(02)00199-5
11.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2019
, “
Wear Characteristics of Friction Stir Processed Magnesium RZ 5 Composites
,”
ASME J. Tribol.
,
141
(
4
), p.
041601
. 10.1115/1.4042039
12.
Jadav
,
H. H.
,
Badheka
,
V.
,
Sharma
,
D. K.
, and
Upadhyay
,
G.
,
2020
, “
Effect of Pin Diameter and Different Cooling Media on Friction Stir Welding of Dissimilar Al-Mg Alloys
,”
Mater. Today: Proc.
, in press.
13.
Sudhakar
,
I.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2016
, “
Ballistic Behavior of Boron Carbide Reinforced AA7075 Aluminium Alloy Using Friction Stir Processing–An Experimental Study and Analytical Approach
,”
Def. Technol.
,
12
(
1
), pp.
25
31
. 10.1016/j.dt.2015.04.005
14.
Sudhakar
,
I.
,
Madhu
,
V.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Enhancement of Wear and Ballistic Resistance of Armour Grade AA7075 Aluminium Alloy Using Friction Stir Processing
,”
Def. Technol.
,
11
(
1
), pp.
10
17
.
15.
Mahoney
,
M. W.
, and
Mishra
,
R. S.
,
2007
, “
Friction Stir Welding and Processing
,”
ASM Int.
16.
Scharf
,
T.
, and
Prasad
,
S.
,
2013
, “
Solid Lubricants: A Review
,”
J. Mater. Sci.
,
48
(
2
), pp.
511
531
.
17.
Alidokht
,
S.
,
Abdollah-Zadeh
,
A.
,
Soleymani
,
S.
, and
Assadi
,
H.
,
2011
, “
Microstructure and Tribological Performance of an Aluminium Alloy Based Hybrid Composite Produced by Friction Stir Processing
,”
Mater. Des.
,
32
(
5
), pp.
2727
2733
.
18.
Alidokht
,
S.
,
Abdollah-Zadeh
,
A.
, and
Assadi
,
H.
,
2013
, “
Effect of Applied Load on the Dry Sliding Wear Behaviour and the Subsurface Deformation on Hybrid Metal Matrix Composite
,”
Wear
,
305
(
1–2
), pp.
291
298
. 10.1016/j.wear.2012.11.043
19.
Palanivel
,
R.
,
Dinaharan
,
I.
,
Laubscher
,
R.
, and
Davim
,
J. P.
,
2016
, “
Influence of Boron Nitride Nanoparticles on Microstructure and Wear Behavior of AA6082/TiB2 Hybrid Aluminum Composites Synthesized by Friction Stir Processing
,”
Mater. Des.
,
106
, pp.
195
204
. 10.1016/j.matdes.2016.05.127
20.
Sharma
,
D. K.
,
Patel
,
V.
,
Badheka
,
V.
,
Mehta
,
K.
, and
Upadhyay
,
G.
,
2019
, “
Fabrication of Hybrid Surface Composites AA6061/(B4C + MoS2) via Friction Stir Processing
,”
ASME J. Tribol.
,
141
(
5
), p.
052201
. 10.1115/1.4043067
21.
Singh
,
H.
,
Singh
,
P.
, and
Bhowmick
,
H.
,
2018
, “
Influence of MoS2, H3BO3, and MWCNT Additives on the Dry and Lubricated Sliding Tribology of AMMC–Steel Contacts
,”
ASME J. Tribol.
,
140
(
4
), p.
041801
. 10.1115/1.4038957
22.
Gajrani
,
K. K.
,
Sankar
,
M. R.
, and
Dixit
,
U. S.
,
2018
, “
Tribological Performance of MoS2-Filled Microtextured Cutting Tools During dry Sliding Test
,”
ASME J. Tribol.
,
140
(
2
), p.
021301
. 10.1115/1.4037354
23.
Nazari
,
M.
,
Eskandari
,
H.
, and
Khodabakhshi
,
F.
,
2019
, “
Production and Characterization of an Advanced AA6061-Graphene-TiB2 Hybrid Surface Nanocomposite by Multi-Pass Friction Stir Processing
,”
Surf. Coat. Technol.
,
377
, p.
124914
. 10.1016/j.surfcoat.2019.124914
24.
Yaqoob
,
B.
,
Pasha
,
R. A.
,
Awang
,
M.
,
Nasir
,
M. A.
,
Hussain
,
A.
, and
Nazir
,
K.
,
2019
, “
Comparison of Mixing Strategies and Hybrid Ratio Optimization for Mechanical Properties Enhancement of Al-CeO2-GNP’s Metal Matrix Composite Fabricated by Friction Stir Processing
,”
Metall. Microstruct. Anal.
,
8
(
4
), pp.
534
544
. 10.1007/s13632-019-00553-0
25.
Akbari
,
M.
,
Shojaeefard
,
M. H.
,
Asadi
,
P.
, and
Khalkhali
,
A.
,
2019
, “
Wear and Mechanical Properties of Surface Hybrid Metal Matrix Composites on Al–Si Aluminum Alloys Fabricated by Friction Stir Processing
,”
Proc. Inst. Mech. Eng. L
,
233
(
5
), pp.
790
799
. 10.1177/1464420717702413
26.
Ahmadifard
,
S.
,
Kazemi
,
S.
, and
Heidarpour
,
A.
,
2018
, “
Production and Characterization of A5083–Al2O3–TiO2 Hybrid Surface Nanocomposite by Friction Stir Processing
,”
Proc. Inst. Mech. Eng. L
,
232
(
4
), pp.
287
293
. 10.1177/1464420715623977
27.
Amra
,
M.
,
Ranjbar
,
K.
, and
Dehmolaei
,
R.
,
2015
, “
Mechanical Properties and Corrosion Behavior of CeO2 and SiC Incorporated Al5083 Alloy Surface Composites
,”
J. Mater. Eng. Perform.
,
24
(
8
), pp.
3169
3179
. 10.1007/s11665-015-1596-9
28.
Mahmoud
,
E. R.
,
Takahashi
,
M.
,
Shibayanagi
,
T.
, and
Ikeuchi
,
K.
,
2010
, “
Wear Characteristics of Surface-Hybrid-MMCs Layer Fabricated on Aluminum Plate by Friction Stir Processing
,”
Wear
,
268
(
9–10
), pp.
1111
1121
. 10.1016/j.wear.2010.01.005
29.
Mahmoud
,
E. R.
,
Takahashi
,
M.
,
Shibayanagi
,
T.
, and
Ikeuchi
,
K.
,
2009
, “
Fabrication of Surface-Hybrid-MMCS Layer on Aluminum Plate by Friction Stir Processing and Its Wear Characteristics
,”
Mater. Trans.
,
50
(
7
), pp.
1824
1831
.
30.
Lu
,
D.
,
Jiang
,
Y.
, and
Zhou
,
R.
,
2013
, “
Wear Performance of Nano-Al2O3 Particles and CNTs Reinforced Magnesium Matrix Composites by Friction Stir Processing
,”
Wear
,
305
(
1–2
), pp.
286
290
. 10.1016/j.wear.2012.11.079
31.
Asl
,
A. M.
, and
Khandani
,
S.
,
2013
, “
Role of Hybrid Ratio in Microstructural, Mechanical and Sliding Wear Properties of the Al5083/Graphitep/Al2O3p a Surface Hybrid Nanocomposite Fabricated via Friction Stir Processing Method
,”
Mater. Sci. Eng. A
,
559
, pp.
549
557
. 10.1016/j.msea.2012.08.140
32.
Rejil
,
C. M.
,
Dinaharan
,
I.
,
Vijay
,
S.
, and
Murugan
,
N.
,
2012
, “
Microstructure and Sliding Wear Behavior of AA6360/(TiC+ B4C) Hybrid Surface Composite Layer Synthesized by Friction Stir Processing on Aluminum Substrate
,”
Mater. Sci. Eng. A
,
552
, pp.
336
344
. 10.1016/j.msea.2012.05.049
33.
Narimani
,
M.
,
Lotfi
,
B.
, and
Sadeghian
,
Z.
,
2016
, “
Evaluation of the Microstructure and Wear Behaviour of AA6063-B4C/TiB2 Mono and Hybrid Composite Layers Produced by Friction Stir Processing
,”
Surf. Coat. Technol.
,
285
, pp.
1
10
. 10.1016/j.surfcoat.2015.11.015
34.
Hosseini
,
S.
,
Ranjbar
,
K.
,
Dehmolaei
,
R.
, and
Amirani
,
A.
,
2015
, “
Fabrication of Al5083 Surface Composites Reinforced by CNTs and Cerium Oxide Nano Particles via Friction Stir Processing
,”
J. Alloys Compd.
,
622
, pp.
725
733
. 10.1016/j.jallcom.2014.10.158
35.
Yuvaraj
,
N.
, and
Aravindan
,
S.
,
2017
, “
Wear Characteristics of Al5083 Surface Hybrid Nano-Composites by Friction Stir Processing
,”
Trans. Indian Inst. Met.
,
70
(
4
), pp.
1111
1129
.
36.
Eskandari
,
H.
,
Taheri
,
R.
, and
Khodabakhshi
,
F.
,
2016
, “
Friction-stir Processing of an AA8026-TiB2-Al2O3 Hybrid Nanocomposite: Microstructural Developments and Mechanical Properties
,”
Mater. Sci. Eng. A
,
660
, pp.
84
96
. 10.1016/j.msea.2016.02.081
37.
Patle
,
H.
,
Mahendiran
,
P.
,
Sunil
,
B. R.
, and
Dumpala
,
R.
,
2019
, “
Hardness and Sliding Wear Characteristics of AA7075-T6 Surface Composites Reinforced With B4C and MoS2 Particles
,”
Mater. Res. Express
,
6
(
8
), p.
086589
. 10.1088/2053-1591/ab1ff4
38.
Janbozorgi
,
M.
,
Shamanian
,
M.
,
Sadeghian
,
M.
, and
Sepehrinia
,
P.
,
2017
, “
Improving Tribological Behavior of Friction Stir Processed A413/SiCp Surface Composite Using MoS2 Lubricant Particles
,”
Trans. Nonferrous Met. Soc. China
,
27
(
2
), pp.
298
304
. 10.1016/S1003-6326(17)60034-7
39.
Jain
,
V. K. S.
,
Yazar
,
K.
, and
Muthukumaran
,
S.
,
2019
, “
Development and Characterization of Al5083-CNTs/SiC Composites via Friction Stir Processing
,”
J. Alloys Compd.
,
798
, pp.
82
92
.
40.
Soleymani
,
S.
,
Abdollah-Zadeh
,
A.
, and
Alidokht
,
S.
,
2012
, “
Microstructural and Tribological Properties of Al5083 Based Surface Hybrid Composite Produced by Friction Stir Processing
,”
Wear
,
278–279
, pp.
41
47
. 10.1016/j.wear.2012.01.009
41.
Soleymani
,
S.
,
Abdollah-Zadeh
,
A.
, and
Alidokht
,
S.
,
2013
, “
Microstructural and Tribological Properties of Ultra Fine Grained Hybrid Composite Produced by Friction Stir Processing
,”
Mater. Phys. Mech.
,
17
(
1
), pp.
6
10
.
42.
Sharma
,
A.
,
Mani Sharma
,
V.
,
Sahoo
,
B.
,
Joseph
,
J.
, and
Paul
,
J.
,
2018
, “
Study of Nano-Mechanical, Electrochemical and Raman Spectroscopic Behavior of Al6061-SiC-Graphite Hybrid Surface Composite Fabricated Through Friction Stir Processing
,”
J. Compos. Sci.
,
2
(
2
), p.
32
.
43.
Sharma
,
A.
,
Sharma
,
V. M.
,
Mewar
,
S.
,
Pal
,
S. K.
, and
Paul
,
J.
,
2018
, “
Friction Stir Processing of Al6061-SiC-Graphite Hybrid Surface Composites
,”
Mater. Manuf. Processes
,
33
(
7
), pp.
795
804
.
44.
Amra
,
M.
,
Ranjbar
,
K.
, and
Hosseini
,
S.
,
2018
, “
Microstructure and Wear Performance of Al5083/CeO2/SiC Mono and Hybrid Surface Composites Fabricated by Friction Stir Processing
,”
Trans. Nonferrous Met. Soc. China
,
28
(
5
), pp.
866
878
. 10.1016/S1003-6326(18)64720-X
45.
Pol
,
N.
,
Verma
,
G.
,
Pandey
,
R.
, and
Shanmugasundaram
,
T.
,
2019
, “
Fabrication of AA7005/TiB2-B4C Surface Composite by Friction Stir Processing: Evaluation of Ballistic Behaviour
,”
Def. Technol.
,
15
(
3
), pp.
363
368
. 10.1016/j.dt.2018.08.002
46.
Prakash
,
T.
,
Sivasankaran
,
S.
, and
Sasikumar
,
P.
,
2015
, “
Mechanical and Tribological Behaviour of Friction-Stir-Processed Al 6061 Aluminium Sheet Metal Reinforced With Al2O3/0.5Gr Hybrid Surface Nanocomposite
,”
Arabian J. Sci. Eng.
,
40
(
2
), pp.
559
569
.
47.
Liu
,
F.
,
Ji
,
Y.
,
Sun
,
Z.
,
Wang
,
G.
, and
Bai
,
Y.
,
2019
, “
Enhancing Corrosion Resistance of Al-Cu/AZ31 Composites Synthesized by a Laser Cladding and FSP Hybrid Method
,”
Mater. Manuf. Processes
,
34
(
13
), pp.
1458
1466
. 10.1080/10426914.2019.1661432
48.
Dinesh
,
D.
,
Megalingam
,
A.
,
Rajamurugan
,
G.
,
Arundeep
,
M.
, and
Tajdeen
,
A.
,
2019
, “
Evaluation of Microstructure and Tribological Characterization of Friction Stir Processed Al 6063/B4C+ SiO2 Composites
,”
AIP Conf. Proc.
,
2128
(
1
), p.
020030
. 10.1063/1.5117942
49.
Devaraju
,
A.
,
Kumar
,
A.
,
Kumaraswamy
,
A.
, and
Kotiveerachari
,
B.
,
2013
, “
Influence of Reinforcements (SiC and Al2O3) and Rotational Speed on Wear and Mechanical Properties of Aluminum Alloy 6061-T6 Based Surface Hybrid Composites Produced via Friction Stir Processing
,”
Mater. Des.
,
51
, pp.
331
341
. 10.1016/j.matdes.2013.04.029
50.
Devaraju
,
A.
,
Kumar
,
A.
, and
Kotiveerachari
,
B.
,
2013
, “
Influence of Rotational Speed and Reinforcements on Wear and Mechanical Properties of Aluminum Hybrid Composites via Friction Stir Processing
,”
Mater. Des.
,
45
, pp.
576
585
.
51.
Sharma
,
D.
,
Patel
,
V.
,
Badheka
,
V.
,
Mehta
,
K.
, and
Upadhyay
,
G.
,
2020
, “
Different Reinforcement Strategies of Hybrid Surface Composite AA6061/(B4C+ MoS2) Produced by Friction Stir Processing
,”
Materialwiss. Werkstofftech.
,
51
(
11
), pp.
1493
1506
.
52.
Vignesh Kumar
,
M.
,
Padmanaban
,
G.
, and
Balasubramanian
,
V.
,
2020
, “
Role of Tool Pin Profiles on Wear Characteristics of Friction Stir Processed Magnesium Alloy ZK60/Silicon Carbide Surface Composites
,”
Materialwiss. Werkstofftech.
,
51
(
2
), pp.
140
152
. 10.1002/mawe.201900007
53.
Dani
,
M. S.
,
Dave
,
I. B.
, and
Parmar
,
B.
,
2019
, “
Corrosion Behavior of Die-Cast and Friction Stir-Processed AZ91 Magnesium Alloys in 5% NaCl
,”
J. Inst. Eng.: Ser. D
,
100
(
1
), pp.
21
27
. 10.1007/s40033-019-00173-6
54.
Rana
,
H.
, and
Badheka
,
V.
,
2019
, “
Elucidation of the Role of Rotation Speed and Stirring Direction on AA 7075-B4C Surface Composites Formulated by Friction Stir Processing
,”
Proc. Inst. Mech. Eng. L
,
233
(
5
), pp.
977
994
. 10.1177/1464420717736548
55.
Mehta
,
K.
, and
Badheka
,
V.
,
2019
, “
Wear Behavior of Boron-Carbide Reinforced Aluminum Surface Composites Fabricated by Friction Stir Processing
,”
Wear
,
426
, pp.
975
980
.
56.
Pezeshkian
,
M.
,
Ebrahimzadeh
,
I.
, and
Gharavi
,
F.
,
2018
, “
Fabrication of Cu Surface Composite Reinforced by Ni Particles via Friction Stir Processing: Microstructure and Tribology Behaviors
,”
ASME J. Tribol.
,
140
(
1
), p.
011607
. 10.1115/1.4037069
57.
Fekri Soustani
,
M.
,
Taghiabadi
,
R.
,
Jafarzadegan
,
M.
,
Shahriyari
,
F.
, and
Rahmani
,
A.
,
2019
, “
Improving the Tribological Properties of Al-7Fe-5Ni Alloys via Friction Stir Processing
,”
ASME J. Tribol.
,
141
(
12
), p.
121602
. 10.1115/1.4044727
58.
Thangarasu
,
A.
,
Murugan
,
N.
,
Dinaharan
,
I.
, and
Vijay
,
S.
,
2015
, “
Synthesis and Characterization of Titanium Carbide Particulate Reinforced AA6082 Aluminium Alloy Composites via Friction Stir Processing
,”
Arch. Civ. Mech. Eng.
,
15
(
2
), pp.
324
334
. 10.1016/j.acme.2014.05.010
59.
Patel
,
V. V.
,
Badheka
,
V.
, and
Kumar
,
A.
,
2016
, “
Friction Stir Processing as a Novel Technique to Achieve Superplasticity in Aluminum Alloys: Process Variables, Variants, and Applications
,”
Metall. Microstruct. Anal.
,
5
(
4
), pp.
278
293
.
60.
Patel
,
V. V.
,
Badheka
,
V.
, and
Kumar
,
A.
,
2017
, “
Effect of Polygonal Pin Profiles on Friction Stir Processed Superplasticity of AA7075 Alloy
,”
J. Mater. Process. Technol.
,
240
, pp.
68
76
.
61.
Zhang
,
W.
,
Liu
,
H.
,
Ding
,
H.
, and
Fujii
,
H.
,
2019
, “
Grain Refinement and Superplastic Flow in Friction Stir Processed Ti–15V–3Cr–3Sn–3Al Alloy
,”
J. Alloys Compd.
,
803
, pp.
901
911
.
62.
Patel
,
V.
,
Li
,
W.
,
Liu
,
X.
,
Wen
,
Q.
, and
Su
,
Y.
,
2019
, “
Through-Thickness Microstructure and Mechanical Properties in Stationary Shoulder Friction Stir Processed AA7075
,”
Mater. Sci. Technol.
,
35
(
14
), pp.
1762
1769
.
63.
El-Mahallawy
,
N.
,
Majed
,
A.
, and
Maboud
,
A. A. G. A.
,
2020
, “
Effect of FSP Process Parameters With Air Blowing on Microstructure and Hardness of NiAl Bronze Alloy
,”
Mater. Res. Express
,
7
(
1
), p.
016590
. 10.1088/2053-1591/ab691a
64.
Patel
,
V.
,
Li
,
W.
,
Liu
,
X.
,
Wen
,
Q.
,
Su
,
Y.
,
Shen
,
J.
, and
Fu
,
B.
,
2020
, “
Tailoring Grain Refinement Through Thickness in Magnesium Alloy via Stationary Shoulder Friction Stir Processing and Copper Backing Plate
,”
Mater. Sci. Eng. A
,
784
, p.
139322
.
65.
Grewal
,
H. S.
,
Arora
,
H. S.
,
Singh
,
H.
,
Agrawal
,
A.
, and
Mukherjee
,
S.
,
2014
, “
Improving Erosion Resistance of Hydroturbine Steel Using Friction Stir Processing
,”
ASME J. Tribol.
,
136
(
4
), p.
041102
. 10.1115/1.4027622
66.
Sharma
,
V.
,
Prakash
,
U.
, and
Kumar
,
B. M.
,
2015
, “
Surface Composites by Friction Stir Processing: A Review
,”
J. Mater. Process. Technol.
,
224
, pp.
117
134
. 10.1016/j.jmatprotec.2015.04.019
67.
Patel
,
V.
,
Li
,
W.
,
Vairis
,
A.
, and
Badheka
,
V.
,
2019
, “
Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: Microstructural Evolution and Property Enhancement
,”
Crit. Rev. Solid State Mater. Sci.
,
44
(
5
), pp.
378
426
. 10.1080/10408436.2018.1490251
68.
Ratna Sunil
,
B.
,
2016
, “
Different Strategies of Secondary Phase Incorporation Into Metallic Sheets by Friction Stir Processing in Developing Surface Composites
,”
Int. J. Mech. Mater. Eng.
,
11
(
1
), pp.
1
8
. 10.1186/s40712-016-0054-2
69.
Heidarpour
,
A.
,
Ahmadifard
,
S.
, and
Kazemi
,
S.
,
2018
, “
On the Al5083–Al2O3–TiO2 Hybrid Surface Nanocomposite Produced by Friction Stir Processing
,”
Prot. Met. Phys. Chem. Surf.
,
54
(
3
), pp.
409
415
. 10.1134/S2070205118030279
70.
Fotoohi
,
H.
,
Lotfi
,
B.
,
Sadeghian
,
Z.
, and
Byeon
,
J.-w.
,
2019
, “
Microstructural Characterization and Properties of In Situ Al-Al3Ni/TiC Hybrid Composite Fabricated by Friction Stir Processing Using Reactive Powder
,”
Mater. Charact.
,
149
, pp.
124
132
. 10.1016/j.matchar.2019.01.024
71.
Zangabad
,
P. S.
,
Khodabakhshi
,
F.
,
Simchi
,
A.
, and
Kokabi
,
A.
,
2016
, “
Fatigue Fracture of Friction-Stir Processed Al–Al3Ti–MgO Hybrid Nanocomposites
,”
Int. J. Fatigue
,
87
, pp.
266
278
. 10.1016/j.ijfatigue.2016.02.007
72.
Liu
,
F.
,
Ji
,
Y.
,
Meng
,
Q.
, and
Li
,
Z.
,
2016
, “
Microstructure and Corrosion Resistance of Laser Cladding and Friction Stir Processing Hybrid Modification Al-Si Coatings on AZ31B
,”
Vacuum
,
133
, pp.
31
37
. 10.1016/j.vacuum.2016.08.010
73.
Barmouz
,
M.
,
Zall
,
V.
, and
Pashazadeh
,
H.
,
2016
, “
Mechanical and Microstructural Characterization of Hybrid Cu-SiC-Zn Composites Fabricated Via Friction Stir Processing
,”
Mater. Res.
,
19
(
6
), pp.
1292
1298
. 10.1590/1980-5373-mr-2016-0152
74.
Du
,
Z.
,
Tan
,
M. J.
,
Guo
,
J. F.
,
Bi
,
G.
, and
Wei
,
J.
,
2016
, “
Fabrication of a new Al-Al2O3-CNTs Composite Using Friction Stir Processing (FSP)
,”
Mater. Sci. Eng. A
,
667
, pp.
125
131
. 10.1016/j.msea.2016.04.094
75.
Srinivasu
,
R.
,
Rao
,
A. S.
,
Reddy
,
G. M.
, and
Rao
,
K. S.
,
2015
, “
Friction Stir Surfacing of Cast A356 Aluminium–Silicon Alloy With Boron Carbide and Molybdenum Disulphide Powders
,”
Def. Technol.
,
11
(
2
), pp.
140
146
. 10.1016/j.dt.2014.09.004
76.
Jalilvand
,
M. M.
,
Mazaheri
,
Y.
,
Heidarpour
,
A.
, and
Roknian
,
M.
,
2019
, “
Development of A356/Al2O3+ SiO2 Surface Hybrid Nanocomposite by Friction Stir Processing
,”
Surf. Coat. Technol.
,
360
, pp.
121
132
. 10.1016/j.surfcoat.2018.12.126
77.
Komarasamy
,
M.
,
Mishra
,
R. S.
,
Baumann
,
J. A.
,
Grant
,
G.
, and
Hovanski
,
Y.
,
2013
, “Microstructure and Mechanical Property Correlation in Al-B4C Surface Composite Produced via Friction Stir Processing,”
Friction Stir Welding and Processing VII
,
R.
Mishra
,
M. W.
Mahoney
,
Y.
Sato
,
Y.
Hovanski
, and
R.
Verma
, eds.,
Springer
,
Cham
, pp.
39
46
.
78.
Gandra
,
J.
,
Miranda
,
R.
,
Vilaça
,
P.
,
Velhinho
,
A.
, and
Teixeira
,
J. P.
,
2011
, “
Functionally Graded Materials Produced by Friction Stir Processing
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1659
1668
. 10.1016/j.jmatprotec.2011.04.016
79.
Thankachan
,
T.
,
Prakash
,
K. S.
, and
Kavimani
,
V.
,
2019
, “
Investigating the Effects of Hybrid Reinforcement Particles on the Microstructural, Mechanical and Tribological Properties of Friction Stir Processed Copper Surface Composites
,”
Compos. Part B: Eng.
,
174
, p.
107057
. 10.1016/j.compositesb.2019.107057
80.
Heydarian
,
A.
,
Dehghani
,
K.
, and
Slamkish
,
T.
,
2014
, “
Optimizing Powder Distribution in Production of Surface Nano-Composite via Friction Stir Processing
,”
Metall. Mater. Trans. B
,
45
(
3
), pp.
821
826
. 10.1007/s11663-014-0025-z
81.
Li
,
C.
,
Feng
,
X.
,
Shen
,
Y.
, and
Chen
,
W.
,
2016
, “
Preparation of Al2O3/TiO2 Particle-Reinforced Copper Through Plasma Spraying and Friction Stir Processing
,”
Mater. Des.
,
90
, pp.
922
930
. 10.1016/j.matdes.2015.11.047
82.
Sharifitabar
,
M.
,
Kashefi
,
M.
, and
Khorshahian
,
S.
,
2016
, “
Effect of Friction Stir Processing Pass Sequence on Properties of Mg–ZrSiO4–Al2O3 Surface Hybrid Micro/Nano-Composites
,”
Mater. Des.
,
108
, pp.
1
7
. 10.1016/j.matdes.2016.06.087
83.
Barenji
,
R. V.
,
Khojastehnezhad
,
V. M.
,
Pourasl
,
H. H.
, and
Rabiezadeh
,
A.
,
2016
, “
Wear Properties of Al–Al2O3/TiB2 Surface Hybrid Composite Layer Prepared by Friction Stir Process
,”
J. Compos. Mater.
,
50
(
11
), pp.
1457
1466
. 10.1177/0021998315592007
84.
Aruri
,
D.
,
Adepu
,
K.
,
Adepu
,
K.
, and
Bazavada
,
K.
,
2013
, “
Wear and Mechanical Properties of 6061-T6 Aluminum Alloy Surface Hybrid Composites [(SiC+ Gr) and (SiC+ Al2O3)] Fabricated by Friction Stir Processing
,”
J. Mater. Res. Technol.
,
2
(
4
), pp.
362
369
. 10.1016/j.jmrt.2013.10.004
85.
Khan
,
M.
,
Rehman
,
A.
,
Aziz
,
T.
,
Naveed
,
K.
,
Ahmad
,
I.
, and
Subhani
,
T.
,
2017
, “
Cold Formability of Friction Stir Processed Aluminum Composites Containing Carbon Nanotubes and Boron Carbide Particles
,”
Mater. Sci. Eng. A
,
701
, pp.
382
388
.
86.
Khan
,
M.
,
Rehman
,
A.
,
Aziz
,
T.
,
Shahzad
,
M.
,
Naveed
,
K.
, and
Subhani
,
T.
,
2018
, “
Effect of Inter-Cavity Spacing in Friction Stir Processed Al 5083 Composites Containing Carbon Nanotubes and Boron Carbide Particles
,”
J. Mater. Process. Technol.
,
253
, pp.
72
85
. 10.1016/j.jmatprotec.2017.11.002
87.
Sharma
,
A.
,
Narsimhachary
,
D.
,
Sharma
,
V. M.
,
Sahoo
,
B.
, and
Paul
,
J.
,
2019
, “
Surface Modification of Al6061-SiC Surface Composite Through Impregnation of Graphene, Graphite & Carbon Nanotubes via FSP: A Tribological Study
,”
Surf. Coat. Technol.
,
368
, pp.
175
191
. 10.1016/j.surfcoat.2019.04.001
88.
Sharma
,
A.
,
Sharma
,
V. M.
, and
Paul
,
J.
,
2019
, “
A Comparative Study on Microstructural Evolution and Surface Properties of Graphene/CNT Reinforced Al6061− SiC Hybrid Surface Composite Fabricated via Friction Stir Processing
,”
Trans. Nonferrous Met. Soc. China
,
29
(
10
), pp.
2005
2026
. 10.1016/S1003-6326(19)65108-3
89.
Gangil
,
N.
,
Maheshwari
,
S.
, and
Siddiquee
,
A. N.
,
2018
, “
Novel Use of Distribution Facilitators and Time–Temperature Range for Strengthening in Surface Composites on AA7050-T7451
,”
Metall. Microstruct. Anal.
,
7
(
5
), pp.
561
577
. 10.1007/s13632-018-0474-x
90.
Gangil
,
N.
,
Siddiquee
,
A. N.
, and
Maheshwari
,
S.
,
2020
, “
Investigation on the In-Process Traverse Force Evolution During Surface Composites Fabrication on Al-Zn-Mg-Cu Alloy Through Friction Stir Processing
,”
Mater. Today: Proc.
,
25
, pp.
686
690
. 10.1016/j.matpr.2019.08.062
91.
Thankachan
,
T.
,
Soorya Prakash
,
K.
, and
Kamarthin
,
M.
,
2018
, “
Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques
,”
ASME J. Tribol.
,
140
(
3
), p.
031610
. 10.1115/1.4038688
92.
Raheja
,
G. S.
,
Singh
,
S.
, and
Prakash
,
C.
,
2020
, “
Development of Hybrid Gr/SiC Reinforced AMCs Through Friction Stir Processing
,”
Mater. Today: Proc.
, in press.
93.
Thankachan
,
T.
,
Prakash
,
K. S.
, and
Kavimani
,
V.
,
2018
, “
Effect of Friction Stir Processing and Hybrid Reinforcements on Copper
,”
Mater. Manuf. Processes
,
33
(
15
), pp.
1681
1692
. 10.1080/10426914.2018.1453149
94.
Khojastehnezhad
,
V. M.
,
Pourasl
,
H. H.
, and
Vatankhah Barenji
,
R.
,
2019
, “
Effect of Tool pin Profile on the Microstructure and Mechanical Properties of Friction Stir Processed Al6061/Al2O3—TiB2 Surface Hybrid Composite Layer
,”
Proc. Inst. Mech. Eng. L
,
233
(
5
), pp.
900
912
. 10.1177/1464420717715048
95.
Kurt
,
H. I.
,
2016
, “
Influence of Hybrid Ratio and Friction Stir Processing Parameters on Ultimate Tensile Strength of 5083 Aluminum Matrix Hybrid Composites
,”
Compos. Part B: Eng.
,
93
, pp.
26
34
. 10.1016/j.compositesb.2016.02.056
96.
Kurt
,
H. I.
,
Oduncuoglu
,
M.
, and
Asmatulu
,
R.
,
2016
, “
Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated Through Friction Stir Welding Process
,”
J. Iron Steel Res. Int.
,
23
(
10
), pp.
1119
1126
. 10.1016/S1006-706X(16)30165-0
97.
Patil
,
N. A.
,
Pedapati
,
S. R.
,
Mamat
,
O. B.
, and
Hidayat Syah Lubis
,
A. M.
,
2019
, “
Optimization of Friction Stir Process Parameters for Enhancement in Surface Properties of Al 7075-SiC/Gr Hybrid Surface Composites
,”
Coatings
,
9
(
12
), p.
830
. 10.3390/coatings9120830
98.
Kumar
,
T. S.
,
Shalini
,
S.
, and
Kumar
,
K. K.
,
2020
, “
Effect of Friction Stir Processing and Hybrid Reinforcement on Wear Behaviour of AA6082 Alloy Composite
,”
Mater. Res. Express
,
7
(
2
), p.
026507
.
99.
Moustafa
,
E. B.
,
Melaibari
,
A.
, and
Basha
,
M.
,
2020
, “
Wear and Microhardness Behaviors of AA7075/SiC-BN Hybrid Nanocomposite Surfaces Fabricated by Friction Stir Processing
,”
Ceramics International
,
46
(
10
), pp.
16938
16943
.
100.
Adibpour
,
A. H.
,
Ebrahimzadeh
,
I.
, and
Gharavi
,
F.
,
2018
, “
Microstructural and Tribological Properties of A356 Based Surface Hybrid Composite Produced by Friction Stir Processing
,”
Mater. Res. Express
,
6
(
1
), p.
016501
. 10.1088/2053-1591/aae0c5
101.
Azimi-Roeen
,
G.
,
Kashani-Bozorg
,
S. F.
,
Nosko
,
M.
,
Nagy
,
S.
, and
Matko
,
I.
,
2018
, “
Formation of Al/(Al13Fe4 + Al2O3) Nano-Composites via Mechanical Alloying and Friction Stir Processing
,”
J. Mater. Eng. Perform.
,
27
, pp.
471
482
.
102.
AzimiRoeen
,
G.
,
Kashani-Bozorg
,
S. F.
,
Nosko
,
M.
, and
Lotfian
,
S.
,
2019
, “
Mechanical and Microstructural Characterization of Hybrid Aluminum Nanocomposites Synthesized From an Al–Fe3O4 System by Friction Stir Processing
,”
Met. Mater. Int.
,
26
, pp.
1441
1453
. 10.1007/s12540-019-00393-1
103.
Alishavandi
,
M.
,
Khollari
,
M. A. R.
,
Ebadi
,
M.
,
Alishavandi
,
S.
, and
Kokabi
,
A. H.
,
2020
, “
Corrosion-Wear Behavior of AA1050/Mischmetal Oxides Surface Nanocomposite Fabricated by Friction Stir Processing
,”
J. Alloys Compd.
,
832
, p.
153964
. 10.1016/j.jallcom.2020.153964
104.
Alishavandi
,
M.
,
Ebadi
,
M.
,
Alishavandi
,
S.
, and
Kokabi
,
A. H.
,
2020
, “
Microstructural and Mechanical Characteristics of AA1050/Mischmetal Oxide In-Situ Hybrid Surface Nanocomposite by Multi-Pass Friction Stir Processing
,”
Surf. Coat. Technol.
,
388
, p.
125488
. 10.1016/j.surfcoat.2020.125488
105.
Sharma
,
S.
,
Handa
,
A.
,
Singh
,
S. S.
, and
Verma
,
D.
,
2019
, “
Influence of Tool Rotation Speeds on Mechanical and Morphological Properties of Friction Stir Processed Nano Hybrid Composite of MWCNT-Graphene-AZ31 Magnesium
,”
J. Magnesium Alloys
,
7
(
3
), pp.
487
500
. 10.1016/j.jma.2019.07.001
106.
Sharma
,
S.
,
Handa
,
A.
,
Singh
,
S. S.
, and
Verma
,
D.
,
2019
, “
Synthesis of a Novel Hybrid Nanocomposite of AZ31Mg-Graphene-MWCNT by Multi-Pass Friction Stir Processing and Evaluation of Mechanical Properties
,”
Mater. Res. Express
,
6
(
12
), p.
126531
. 10.1088/2053-1591/ab54da
107.
Jalilvand
,
M. M.
, and
Mazaheri
,
Y.
,
2020
, “
Effect of Mono and Hybrid Ceramic Reinforcement Particles on the Tribological Behavior of the AZ31 Matrix Surface Composites Developed by Friction Stir Processing
,”
Ceram. Int.
,
46
(
12
), pp.
20345
20356
. 10.1016/j.ceramint.2020.05.123
108.
Ostovan
,
F.
,
Amanollah
,
S.
,
Toozandehjani
,
M.
, and
Shafiei
,
E.
,
2020
, “
Fabrication of Al5083 Surface Hybrid Nanocomposite Reinforced by CNTs and Al2O3 Nanoparticles Using Friction Stir Processing
,”
J. Compos. Mater.
,
54
(
8
), pp.
1107
1117
. 10.1177/0021998319874849
109.
Karpasand
,
F.
,
Abbasi
,
A.
, and
Ardestani
,
M.
,
2020
, “
Effect of Amount of TiB2 and B4C Particles on Tribological Behavior of Al7075/B4C/TiB2 Mono and Hybrid Surface Composites Produced by Friction Stir Processing
,”
Surf. Coat. Technol.
,
390
, p.
125680
. 10.1016/j.surfcoat.2020.125680
110.
Raheja
,
G. S.
,
Singh
,
S.
, and
Prakash
,
C.
,
2020
, “
Processing and Characterization of Al5086-Gr-SiC Hybrid Surface Composite Using Friction Stir Technique
,”
Mater. Today: Proc.
,
28
, pp.
1350
1354
. 10.1016/j.matpr.2020.04.729
111.
Heidarpour
,
A.
,
2019
, “
Fabrication and Characterization of A5083-WC-Al2O3 Surface Composite by Friction Stir Processing
,”
J. Mater. Eng. Perform.
,
28
(
5
), pp.
2747
2753
. 10.1007/s11665-019-04093-0
112.
Mahesh
,
V.
, and
Arora
,
A.
,
2019
, “
Effect of Tool Shoulder Diameter on the Surface Hardness of Aluminum-Molybdenum Surface Composites Developed by Single and Double Groove Friction Stir Processing
,”
Metall. Mater. Trans. A
,
50
(
11
), pp.
5373
5383
. 10.1007/s11661-019-05410-x
113.
Moharrami
,
A.
,
Razaghian
,
A.
,
Emamy
,
M.
, and
Taghiabadi
,
R.
,
2019
, “
Effect of Tool Pin Profile on the Microstructure and Tribological Properties of Friction Stir Processed Al-20 wt% Mg2Si Composite
,”
ASME J. Tribol.
,
141
(
12
), p.
122202
. 10.1115/1.4044672
114.
Patel
,
S. K.
,
Singh
,
V. P.
, and
Kuriachen
,
B.
,
2019
, “
Friction Stir Processing of Alloys With Secondary Phase Particles: an Overview
,”
Mater. Manuf. Processes
,
34
(
13
), pp.
1429
1457
. 10.1080/10426914.2019.1662037
115.
Rathee
,
S.
,
Maheshwari
,
S.
,
Siddiquee
,
A. N.
, and
Srivastava
,
M.
,
2018
, “
A Review of Recent Progress in Solid State Fabrication of Composites and Functionally Graded Systems via Friction Stir Processing
,”
Crit. Rev. Solid State Mater. Sci.
,
43
(
4
), pp.
334
366
. 10.1080/10408436.2017.1358146
116.
Dieter
,
G.
,
2005
,
Mechanical Metallurgy, 1988, si Metric Edition
,
McGraw-Hill Book Company
,
London
.
You do not currently have access to this content.