Abstract

In situ TiN ceramic particle reinforced FeCoNiCrMnTi high entropy alloy coating was fabricated by laser cladding processing at high purity nitrogen gas atmosphere on the AISI 304 stainless steel substrate. The effect of Ti addition on the microstructure, phase structure, and wear properties of the coatings was investigated. The results showed that the phase structure of the coatings was mainly face-centered cubic (FCC)-type γ phase. A few of cubic or flower-like TiN ceramic were formed after adding titanium into the FeCoNiCrMn powder. When atomic ratio of Ti exceeds 0.5, Laves phases appeared in the coatings. With increasing of Ti, the micro-hardness and wear resistance of the coatings increased, but friction coefficient and crack resistance of the coatings reduced. Suitable Ti content in the FeCoNiCrMnTix, laser composite coating, had higher resistance to adhesive wear, oxidation wear, and cracking resistance.

References

1.
Song
,
X.
,
Kim
,
S.
,
Baek
,
S.
, and
Park
,
Y.
,
2009
, “
Structural Optimization for Ball Valve Made of CF8M Stainless Steel
,”
Trans. Nonferrous Met. Soc. China
,
19
, pp.
258
261
.
2.
Yang
,
X.
,
Liu
,
M.
,
Liu
,
Z.
,
Du
,
C.
, and
Li
,
X.
,
2020
, “
Failure Analysis of a 304 Stainless Steel Heat Exchanger in Liquid Sulfur Recovery Units
,”
Eng. Fail. Anal.
,
116
, p.
104729
.
3.
Fisher
,
K. B.
,
Miller
,
B. D.
,
Johns
,
E. C.
,
Hermer
,
R.
,
Brown
,
C.
, and
Marquis
,
E. A.
,
2018
, “
Sensitization and Stress Corrosion Crack Response of Dual Certified Type 304/304L Stainless Steel
,”
Corrosion
,
74
(
7
), pp.
737
746
.
4.
Parthasarathi
,
N. L.
,
Borah
,
U.
, and
Albert
,
S. K.
,
2013
, “
Effect of Temperature on Sliding Wear of AISI 316 L(N) Stainless Steel Analysis of Measured Wear and Surface Roughness of Wear Tracks
,”
Mater. Des.
,
51
, pp.
676
682
.
5.
Laleh
,
M.
,
Kargar
,
F.
, and
Velashjerdi
,
M.
,
2013
, “
Low-Temperature Nitriding of Nanocrystalline Stainless Steel and Its Effect on Improving Wear and Corrosion Resistance
,”
J. Mater. Eng. Perform.
,
22
(
5
), pp.
1304
1310
.
6.
Godec
,
M.
,
Donik
,
Č.
,
Kocijan
,
A.
,
Podgornik
,
B.
, and
Skobir Balantič
,
D. A.
,
2020
, “
Effect of Post-Treated Low-Temperature Plasma Nitriding on the Wear and Corrosion Resistance of 316L Stainless Steel Manufactured by Laser Powder-Bed Fusion
,”
Addit. Manuf.
,
32
, p.
101000
.
7.
Chakraborty
,
G.
,
Kumar
,
N.
,
Das
,
C. R.
,
Albert
,
S. K.
,
Bhaduri
,
A. K.
,
Dash
,
S.
, and
Tyagi
,
A. K.
,
2014
, “
Study on Microstructure and Wear Properties of Different Nickel Base Hardfacing Alloys Deposited on Austenitic Stainless Steel
,”
Surf. Coat. Technol.
,
244
(
15
), pp.
180
188
.
8.
Song
,
E. P.
,
Hwang
,
B.
,
Lee
,
S.
,
Kim
,
N. J.
, and
Ahn
,
J.
,
2006
, “
Correlation of Microstructure With Hardness and Wear Resistance of Stainless Steel Blend Coatings Fabricated by Atmospheric Plasma Spraying
,”
Mater. Sci. Eng. A
,
429
(
1–2
), pp.
189
195
.
9.
Shan
,
L.
,
Wang
,
Y.
,
Zhang
,
Y.
,
Zhang
,
Q.
, and
Xue
,
Q.
,
2016
, “
Tribocorrosion Behaviors of PVD CrN Coated Stainless Steel in Seawater
,”
Wear
,
362–363
, pp.
97
104
.
10.
Saketi
,
S.
, and
Olsson
,
M.
,
2017
, “
Influence of CVD and PVD Coating Micro Topography on the Initial Material Transfer of 316L Stainless Steel in Sliding Contacts a Laboratory Study
,”
Wear
,
388–389
, pp.
29
38
.
11.
Awasthi
,
R.
,
Limaye
,
P. K.
,
Kumar
,
S.
,
Kushwaha
,
R. P.
,
Viswanadham
,
C. S.
,
Srivastava
,
D.
,
Soni
,
N. L.
,
Patel
,
R. J.
, and
Dey
,
G. K.
,
2015
, “
Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding
,”
Metall. Mater. Trans. A
,
46
(
3
), pp.
1237
1252
.
12.
Li
,
K.
,
Li
,
D.
,
Liu
,
D.
,
Pei
,
G.
, and
Sun
,
L.
,
2015
, “
Microstructure Evolution and Mechanical Properties of Multiple-Layer Laser Cladding Coating of 308L Stainless Steel
,”
Appl. Surf. Sci.
,
340
, pp.
143
150
.
13.
Tao
,
X. P.
,
Zhang
,
S.
,
Zhang
,
C. H.
,
Wu
,
C. L.
,
Chen
,
J.
, and
Abdullah Adil
,
O.
,
2018
, “
Effect of Fe and Ni Contents on Microstructure and Wear Resistance of Aluminum Bronze Coatings on 316 Stainless Steel by Laser Cladding
,”
Surf. Coat. Technol.
,
342
, pp.
76
84
.
14.
Zhang
,
M. Y.
,
Li
,
M.
,
Wang
,
S. F.
,
Chi
,
J.
,
Ren
,
L. S.
,
Fang
,
M.
, and
Zhou
,
C.
,
2020
, “
Enhanced Wear Resistance and New Insight Into Microstructure Evolution of In-Situ (Ti,Nb)C Reinforced 316 L Stainless Steel Matrix Prepared Via Laser Cladding
,”
Opt. Lasers Eng.
,
128
, p.
106043
.
15.
Jeyaprakash
,
N.
,
Yang
,
C.-H.
, and
Sivasankaran
,
S.
,
2020
, “
Laser Cladding Process of Cobalt and Nickel Based Hard-Micron-Layers on 316L-Stainless-Steel-Substrate
,”
Mater. Manuf. Process.
,
35
(
2
), pp.
142
151
.
16.
Juan
,
P.
,
Jenny
,
Z.
,
Marie
,
L.
,
María
,
T.
, and
Vicente
,
A.
,
2015
, “
Tribology and High Temperature Friction Wear Behavior of MCrAlY Laser Cladding Coatings on Stainless Steel
,”
Wear
,
280–287
, pp.
330
331
.
17.
Yin
,
J.
,
Wang
,
D. Z.
,
Meng
,
L.
,
Ke
,
L. D.
,
Hu
,
Q. W.
, and
Zeng
,
X. Y.
,
2017
, “
High-Temperature Slide Wear of Ni–Cr–Si Metal Silicide Based Composite Coatings on Copper Substrate by Laser-Induction Hybrid Cladding
,”
Surf. Coat. Technol.
,
325
, pp.
120
126
.
18.
Zhang
,
G.
,
Liu
,
H.
,
Tian
,
X.
,
Chen
,
P.
,
Yang
,
H.
, and
Hao
,
J.
,
2020
, “
Microstructure and Properties of AlCoCrFeNiSi High-Entropy Alloy Coating on AISI 304 Stainless Steel by Laser Cladding
,”
J. Mater. Eng. Perform.
,
29
(
1
), pp.
278
288
.
19.
Liang
,
H.
,
Yao
,
H.
,
Qiao
,
D.
,
Nie
,
S.
,
Lu
,
Y.
,
Deng
,
D.
,
Cao
,
Z.
, and
Wang
,
T.
,
2019
, “
Microstructures and Wear Resistance of AlCrFeNi2W0.2Nbx High-Entropy Alloy Coatings Prepared by Laser Cladding
,”
J. Therm. Spray Technol.
,
28
(
6
), pp.
1318
1329
.
20.
Jiang
,
L.
,
Wu
,
W.
,
Cao
,
Z.
,
Deng
,
D.
, and
Li
,
T.
, “
Microstructure Evolution and Wear Behavior of the Laser Cladded CoFeNi2V0.5Nb0.75 and CoFeNi2V0.5Nb High-Entropy Alloy Coatings
,”
J. Therm. Spray Technol.
,
25
(
4
), pp.
806
814
.
21.
Guo
,
Y.
,
Li
,
C.
,
Zeng
,
M.
,
Wang
,
J.
,
Deng
,
P.
, and
Wang
,
Y.
,
2020
, “
In-Situ TiC Reinforced CoCrCuFeNiSi0.2 High-Entropy Alloy Coatings Designed for Enhanced Wear Performance by Laser Cladding
,”
Mater. Chem. Phys.
,
242
, p.
122522
.
22.
Guo
,
Y.
,
Shang
,
X.
, and
Liu
,
Q.
,
2018
, “
Microstructure and Properties of In-Situ TiN Reinforced Laser Cladding CoCr2FeNiTix High-Entropy Alloy Composite Coatings
,”
Surf. Coat. Technol.
,
344
, pp.
353
358
.
23.
Evtushok
,
T. M.
,
Grigor’ev
,
O. N.
,
Kostenko
,
A. D.
,
Zhunkovskii
,
G. L.
,
Kotenko
,
V. A.
, and
Mazur
,
P. V.
,
2005
, “
Tribological Properties of Composite Materials Based on Refractory Titanium Compounds
,”
Powder Metall. Met. Ceram.
,
44
(
7–8
), pp.
353
357
.
24.
Pierson
,
H. O.
,
1996
,
Handbook of Refractory Carbides and Nitrides-Properties, Characteristics, Processing and Applications
,
Noyes Publications
,
Saddle River, NJ
, Chapters 2 and 11.
25.
He
,
J.
,
Wang
,
Q.
,
Zhang
,
H.
,
Dai
,
L.
,
Mukai
,
T.
,
Wu
,
Y.
,
Liu
,
X.
,
Wang
,
H.
,
Nieh
,
T.
, and
Lu
,
Z.
,
2018
, “
Dynamic Deformation Behavior of a Face-Centered Cubic FeCoNiCrMn High-Entropy Alloy
,”
Sci. Bull.
,
63
(
6
), pp.
362
368
.
26.
Chen
,
Z.
,
Wang
,
B.
,
Duan
,
B.
, and
Zhang
,
X.
,
2020
, “
Mechanical Properties and Microstructure of Laser Welded FeCoNiCrMn High-Entropy Alloy
,”
Mater. Lett.
,
262
, p.
127060
.
27.
Almeida
,
R.
,
Börret
,
R.
,
Rimkus
,
W.
,
Harrison
,
D. K.
, and
DeSilva
,
A. K. M.
,
2017
, “
Material Removal Simulation for Steel Mould Polishing
,”
Prod. Manuf. Res.
,
5
, pp.
235
249
.
28.
Abdi
,
M.
,
Taheri
,
A. K.
, and
Bakhtiarydavijani
,
A.
,
2014
, “
A New Analysis Method of the Dry Sliding Wear Process Based on the Low Cycle Fatigue Theory and the Finite Element Method
,”
J. Mater. Eng. Perform.
,
23
(
3
), pp.
1096
1106
.
29.
Zhu
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Tool Wear Characteristics in Machining of Nickel-Based Super-Alloys
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
60
77
.
30.
Aghababaei
,
R.
, and
Zhao
,
K.
,
2020
, “
Adhesive Wear Law at the Single Asperity Level
,”
J. Mech. Phys. Solids
,
143
, p.
104069
.
You do not currently have access to this content.