Abstract

The electroless deposition process can develop composite coatings superior in mechanical and tribological characteristics. The deposited alloy matrix with the reinforcement of a hard ceramic phase can produce a stronger composite coating, favorable for industrial applications. The fabrication process of Ni-B-W-SiC electroless composite coating on steel substrate by reinforcing silicon carbide (SiC) in ternary Ni-B-W matrix is presented in this report. Characteristics of the developed composite coating are studied in reference to electroless ternary Ni-B-W alloy coating. These ternary alloy and composite coatings are also subjected to heat treatment (450 °C, 1 h) to observe structural changes. All coated samples are characterized with field emission scanning electron microscope, X-ray diffraction, inductively coupled plasma-atomic emission spectrometer (ICP-AES), and high resolution transmission electron microscope analyses to draw conclusions in comparative studies concerning morphological features, compositions, and phase structures. Cross-sectional and Raman spectroscopic examinations are performed to authenticate the presence of SiC phases in the alloy matrix. To get a further insight into characteristics features, various nanomechanical and tribological properties of these coatings are evaluated and subsequently co-related. Coatings developed with silicon carbide particles present in matrices show remarkable improvements in nano-hardness (H), reduced modulus (Er), yield strength, and fraction of plastic work done. Heat treatment imparts propitious effects on these mechanical properties due to the formation of harder nickel boride (Ni3B, and Ni2B) phases. Heat-treated Ni-B-W-SiC composite subjected to tribological and micro-scratch testing reveals a significant improvement in sliding wear and scratch resistance as compared to those in other coatings.

References

1.
Zhang
,
B.
,
2016
,
Amorphous and Nano Alloys Electroless Depositions
,
Elsevier
,
Changsha, China
.
2.
Mallory
,
G. O.
, and
Hajdu
,
J. B.
,
1990
,
Electroless Plating: Fundamentals and Applications
,
American Electroplaters and Surface Finishers Society
,
Orlando, FL
.
3.
Sahoo
,
P.
, and
Das
,
S. K.
,
2011
, “
Tribology of Electroless Nickel Coatings—A Review
,”
Mater. Des.
,
32
(
4
), pp.
1760
1775
.
4.
Sudagar
,
J.
,
Lian
,
J.
, and
Sha
,
W.
,
2013
, “
Electroless Nickel, Alloy, Composite, and Nano Coatings–A Critical Review
,”
J. Alloys Compd.
,
571
(
1
), pp.
83
204
.
5.
Vitry
,
V.
, and
Delaunois
,
F.
,
2015
, “Nanostructured Electroless Nickel-Boron Coatings for Wear Resistance,”
Anti-Abrasive Nanocoatings
,
Elsevier
, pp.
157
199
.
6.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Sahoo
,
P.
,
2017
, “
Tribological Behavior of Sodium Borohydride Reduced Electroless Nickel Alloy Coatings at Room and Elevated Temperatures
,”
Surf. Coat. Technol.
,
321
, pp.
464
476
.
7.
Aydeniz
,
A. I.
,
Goksenli
,
A.
,
Dil
,
G.
,
Muhaffel
,
F.
,
Calli
,
C.
, and
Yuksel
,
B.
,
2013
, “
Electroless Ni-B-W Coatings for Improving Hardness, Wear and Corrosion Resistance
,”
Mater. Technol.
,
47
(
6
), pp.
803
806
.
8.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Barman
,
P.
,
2018
, “
Tribological Behavior of Electroless Ni-B-W Coating at Room and Elevated Temperatures
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
232
(
11
), pp.
1
17
.
9.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Sahoo
,
P.
,
2018
, “
Wear and Friction Characteristics of Electroless Ni-B-W Coatings at Different Operating Temperatures
,”
Mater. Res. Express
,
5
(
2
), p.
026526
.
10.
Mukhopadhyay
,
A.
,
Barman
,
T. K.
, and
Sahoo
,
P.
,
2018
, “
Effect of Heat Treatment on the Characteristics of Electroless Ni-B, Ni-B-W and Ni-B-Mo Coatings
,”
Mater. Today: Proc.
,
5
(
2
), pp.
3306
3315
.
11.
Eraslan
,
S.
, and
Urgen
,
M.
,
2015
, “
Oxidation Behavior of Electroless Ni-P, Ni-B and Ni-W-B Coatings Deposited on Steel Substrates
,”
Surf. Coat. Technol.
,
265
, pp.
46
52
.
12.
Yildiz
,
R. A.
,
Goksenli
,
A.
,
Yüksel
,
B. H.
,
Muhaffel
,
F.
, and
Aydeniz
,
A.
,
2013
, “
Effect of Annealing Temperature on the Corrosion Resistance of Electroless Produced Ni-B-W Coatings
,”
Adv. Mater. Res.
,
651
, pp.
263
268
.
13.
Drovosekov
,
A. B.
,
Ivanov
,
M. V.
,
Krutskikh
,
V. M.
,
Lubnin
,
E. N.
, and
Polukarov
,
Y. M.
,
2005
, “
Chemically Deposited Ni-W-B Coatings: Composition, Structure, and Properties
,”
Prot. Met.
,
41
(
1
), pp.
55
62
.
14.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2020
, “
Scratch and Sliding Wear Testing of Electroless Ni-B-W Coating
,”
ASME J. Tribol.
,
142
(
2
), p.
021705
.
15.
Balaraju
,
J. N.
,
Kalavati
, and
Rajam
,
K. S.
,
2009
, “
Surface Morphology and Structure of Electroless Ternary NiWP Deposits with Various W and P Contents
,”
J. Alloys Compd.
,
486
(
1–2
), pp.
468
473
.
16.
Balaraju
,
J. N.
,
Kalavati
,
Manikandanath
,
N. T.
, and
William Grips
,
V. K.
,
2012
, “
Phase Transformation Behavior of Nanocrystalline Ni-W-P Alloys Containing Various W and P Contents
,”
Surf. Coat. Technol.
,
206
(
10
), pp.
2682
2689
.
17.
Ranganatha
,
S.
,
Venkatesha
,
T. V.
, and
Vathsala
,
K.
,
2012
, “
Electroless Ni-W-P Coating and its Nano-WS2 Composite: Preparation and Properties
,”
Ind. Eng. Chem. Res.
,
51
(
23
), pp.
7932
7940
.
18.
Shu
,
X.
,
Wang
,
Y.
,
Lu
,
X.
,
Liu
,
C.
, and
Gao
,
W.
,
2015
, “
Parameter Optimization for Electroless Ni-W-P Coating
,”
Surf. Coat. Technol.
,
276
, pp.
195
201
.
19.
Ghaderi
,
M.
,
Rezagholizadeh
,
M.
,
Heidar
,
A.
, and
Monirvaghefi
,
S. M.
,
2016
, “
The Effect of Al2O3 Nanoparticles on Tribological and Corrosion Behavior of Electroless Ni-B-Al2O3 Composite Coating
,”
Prot. Met. Phys. Chem. Surf.
,
52
(
5
), pp.
854
858
.
20.
Rezagholizadeh
,
M.
,
Ghaderi
,
M.
,
Heidary
,
A.
, and
Monirvaghefi
,
S. M.
,
2015
, “
The Effect of B4C Nanoparticles on the Corrosion and Tribological Behavior of Electroless Ni-B-B4C Composite Coatings
,”
Surf. Eng. Appl. Electrochem.
,
51
(
1
), pp.
18
24
.
21.
Niksefat
,
V.
, and
Ghorbani
,
M.
,
2015
, “
Mechanical and Electrochemical Properties of Ultrasonic-Assisted Electroless Deposition of Ni-B-TiO2 Composite Coatings
,”
J. Alloys Compd.
,
633
, pp.
127
136
.
22.
Shu
,
X.
,
Wang
,
Y.
,
Liu
,
C.
, and
Gao
,
W.
,
2015
, “
Microstructure, and Properties of Ni-B-TiO2 Nano-Composite Coatings Fabricated by Electroless Plating
,”
Mater. Technol. Adv. Funct. Mater.
,
30
(
1–A1
), pp.
A41
A45
.
23.
Ekmekci
,
D.
, and
Bulbul
,
F.
,
2015
, “
Preparation, and Characterization of Electroless Ni–B/Nano-SiO2, Al2O3, TiO2 and CuO Composite Coatings
,”
Bull. Mater. Sci.
,
38
(
3
), pp.
761
768
.
24.
Cieslak
,
G.
, and
Trzaska
,
M.
,
2020
, “
Structure and Properties of Ni-B/Graphene Oxide Composite Coatings Produced by Chemical Reduction Method
,”
J. Mater. Eng. Perform.
,
29
(
3
), pp.
1550
1557
.
25.
Pancrecious
,
J. K.
,
Deepa
,
J. P.
,
Jayan
,
V. U.
,
Bill
,
U. S.
,
Rajan
,
T. P. D.
, and
Pai
,
B. C.
,
2018
, “
Nanoceria Induced Grain Refinement in Electroless Ni-B-CeO2 Composite Coating for Enhanced Wear and Corrosion Resistance of Aluminium Alloy
,”
Surf. Coat. Technol.
,
356
, pp.
29
37
.
26.
Krishnaveni
,
K.
,
Sankara Narayanan
,
T. S. N.
, and
Seshadri
,
S. K.
,
2012
, “
Electroless Ni-B-Si3N4 Composite Coating: Deposition and Evaluation of its Characteristic Properties
,”
Synth. React. Inorg., Met.-Org., Nano-Met. Chem.
,
42
(
7
), pp.
920
927
.
27.
Yazdani
,
S.
,
Tima
,
R.
, and
Mahboubi
,
F.
,
2018
, “
Investigation of Wear Behavior of as-Plated and Plasma-Nitrided Ni-B-CNT Electroless Having Different CNTs Concentration
,”
Appl. Surf. Sci.
,
457
, pp.
942
955
.
28.
Pant
,
H. K.
,
Debnath
,
D.
,
Chakraborty
,
S.
,
Wani
,
M. F.
, and
Das
,
P. K.
,
2018
, “
Mechanical and Tribological Properties of Spark Plasma Sintered SiC-TiB2 and SiC-TiB2-TaC Composites: Effects of Sintering Temperatures 2000(C) and 2100(C)
,”
ASME J. Tribol.
,
140
(
1
), p.
011608
.
29.
Misra
,
D.
,
Shariff
,
S. M.
,
Mukhopadhyay
,
S.
, and
Chatterjee
,
S.
,
2018
, “
Analysis of Instrumented Scratch Hardness and Fracture Toughness Properties of Laser Surface Alloyed Tribological Coatings
,”
Ceram. Int.
,
44
(
4
), pp.
4248
4255
.
30.
Rao
,
T. B.
,
2018
, “
An Experimental Investigation on Mechanical and Wear Properties of Al7075/SiCp Composites: Effect of SiC Content and Particle Size
,”
ASME J. Tribol.
,
140
(
3
), p.
031601
.
31.
Akalin
,
O.
,
Ezirmik
,
K. V.
,
Urgen
,
M.
, and
Newaz
,
G. M.
,
2010
, “
Wear Characteristics of NiTi/Al6061 Short Fiber Metal Matrix Composite Reinforced with SiC Particulates
,”
ASME J. Tribol.
,
132
(
5
), p.
041603
.
32.
Walsh
,
F. C.
,
Low
,
C. T. J.
, and
Bello
,
J. O.
,
2015
, “
Influence of Surfactants on Electrodeposition of a Ni-Nanoparticulate SiC Composite Coating
,”
Trans. IMF
,
93
(
3
), pp.
147
156
.
33.
Narasimman
,
P.
,
Pushpavanam
,
M.
, and
Periasamy
,
V. M.
,
2012
, “
Wear and Scratch Resistance Characteristics of Electrodeposited Nickel-Nano and Micro SiC Composites
,”
Wear
,
292–293
, pp.
197
206
.
34.
Nemane
,
V.
, and
Chatterjee
,
S.
,
2021
, “
Evaluation of Microstructural, Mechanical, and Tribological Characteristics of Ni-B-W-SiC Electroless Composite Coatings Involving Multi-Pass Scratch Test
,”
Mater. Charact.
,
180
, p.
111414
.
35.
Misra
,
D.
,
Dhakar
,
B.
,
Anusha
,
E.
,
Shariff
,
S. M.
,
Mukhopadhyay
,
S.
, and
Chatterjee
,
S.
,
2018
, “
Evaluation of Nanomechanical and Tribological Properties of Laser Surface Alloyedboride-Nitride-Carbide Ceramic Matrix Composite Coatings
,”
Ceram. Int.
,
44
(
14
), pp.
17050
17061
.
36.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
37.
Sribalaji
,
M.
,
Rahman
,
O. S. A.
,
Laha
,
T.
, and
Keshri
,
A. K.
,
2016
, “
Nanoindentation and Nanoscratch Behavior of Electroless Deposited Nickel-Phosphorous Coating
,”
Mater. Chem. Phys.
,
177
, pp.
220
228
.
38.
Shen
,
Y. F.
,
Xue
,
W. Y.
,
Liu
,
Z. Y.
, and
Zuo
,
L.
,
2010
, “
Nanoscratching Deformation and Fracture Toughness of Electroless Ni-P Coatings
,”
Surf. Coat. Technol.
,
205
(
2
), pp.
632
640
.
39.
Dhakar
,
B.
,
Chatterjee
,
S.
, and
Sabiruddin
,
K.
,
2017
, “
Measuring Mechanical Properties of Plasma Sprayed Alumina Coatings by Nanoindentation Technique
,”
J. Mater. Sci. Technol.
,
33
(
3
), pp.
285
293
.
40.
Alisafaei
,
F.
,
Han
,
C.-S.
, and
Sanei
,
S. M. R.
,
2013
, “
On the Time and Indentation Depth Dependence of Hardness, Dissipation and Stiffness in Polydimethylsiloxane
,”
Polym. Test.
,
32
(
7
), pp.
1220
1228
.
41.
Leyland
,
A.
, and
Matthews
,
A.
,
2004
, “
Design Criteria for Wear-Resistant Nanostructured and Glassy-Metal Coatings
,”
Surf. Coat. Technol.
,
177–178
, pp.
317
324
.
42.
Sujith
,
R.
, and
Kumar
,
R.
,
2013
, “
Experimental Investigation on the Indentation Hardness of Precursor Derived Si–B–C–N Ceramics
,”
J. Eur. Ceram. Soc.
,
33
(
13–14
), pp.
2399
2405
.
43.
Gupta
,
A.
,
Barkam
,
S.
,
Lahiri
,
D.
,
Balasubramaniam
,
R.
, and
Balani
,
K.
,
2014
, “
Effect of Alumina Dispersion on Microstructural and Nanomechanical Properties of Pulse Electrodeposited Nickel Alumina Composite Coatings
,”
J. Mater. Sci. Technol.
,
30
(
8
), pp.
1
6
.
44.
Chen
,
Y.
,
Laha
,
T.
,
Balani
,
K.
, and
Agarwal
,
A.
,
2008
, “
Nanomechanical Properties of Hafnium Nitride Coating
,”
Scr. Mater.
,
58
(
12
), pp.
1121
1124
.
45.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Determination of Elastoplastic Properties by Instrumented Sharp Indentation
,”
Scr. Mater.
,
40
(
10
), pp.
1191
1198
.
46.
Arias
,
S.
,
Castano
,
J. G.
,
Correa
,
E.
,
Echeverria
,
F.
, and
Gomez
,
M.
,
2019
, “
Effect of Heat Treatment on Tribological Properties of Ni-B Coatings on Low Carbon Steel: Wear Maps and Wear Mechanisms
,”
ASME J. Tribol.
,
141
(
9
), p.
091601
.
47.
Correa
,
E.
,
Mejia
,
J. F.
,
Castano
,
J. G.
,
Echeverria
,
F.
, and
Gomez
,
M. A.
,
2017
, “
Tribological Characterization of Electroless Ni–B Coatings Formed on Commercial Purity Magnesium
,”
ASME J. Tribol.
,
139
(
5
), p.
051302
.
48.
Rao
,
Q. L.
,
Bi
,
G.
,
Lu
,
Q. H.
,
Wang
,
H. W.
, and
Fan
,
X. I.
,
2005
, “
Microstructure Evolution of Electroless Ni-B Film During its Depositing Process
,”
Appl. Surf. Sci.
,
240
(
1–4
), pp.
28
33
.
49.
Bonin
,
L.
,
Vitry
,
V.
, and
Delaunois
,
F.
,
2020
, “
Inorganic Salts Stabilizers Effect in Electroless Nickel-Boron Plating: Stabilization Mechanism and Microstructure Modification
,”
Surf. Coat. Technol.
,
401
, p.
126276
.
50.
Vitry
,
V.
,
Kanta
,
A. F.
, and
Delaunois
,
F.
,
2010
, “
Initiation and Formation of Electroless Nickel-Boron Coatings on Mild Steel: Effect of Substrate Roughness
,”
Mater. Sci. Eng. B
,
175
(
3
), pp.
266
273
.
51.
Vitry
,
V.
,
Delaunois
,
F.
, and
Dumortier
,
C.
,
2008
, “
Mechanical Properties and Scratch Test Resistance of Nickel-Boron Coated Aluminium Alloy After Heat Treatments
,”
Surf. Coat. Technol.
,
202
(
14
), pp.
3316
3324
.
52.
Chang
,
C.-S.
,
Hou
,
K.-H.
,
Ger
,
M.-d.
,
Chung
,
C.-K.
, and
Lin
,
J.-F.
,
2016
, “
Effects of Annealing Temperature on Microstructure, Surface Roughness, Mechanical and Tribological Properties of Ni-P and Ni-P/SiC Films
,”
Surf. Coat. Technol.
,
288
, pp.
135
143
.
53.
Bonin
,
L.
,
Vitry
,
V.
, and
Delaunois
,
F.
,
2019
, “
The tin Stabilization Effect on the Microstructure, Corrosion, and Wear Resistance of Electroless NiB Coatings
,”
Surf. Coat. Technol.
,
357
, pp.
353
363
.
54.
Srivastava
,
M.
,
William Grips
,
V. K.
, and
Rajam
,
K. S.
,
2007
, “
Electrochemical Deposition and Tribological Behavior of Ni and Ni-Co Metal Matrix Composites with SiC Nano-Particles
,”
Appl. Surf. Sci.
,
253
(
8
), pp.
3814
3824
.
55.
Dragomir
,
M.
,
Valant
,
M.
,
Fanetti
,
M.
, and
Mozharivskyj
,
Y.
,
2016
, “
A Facile Chemical Method for the Synthesis of 3C-SiC Nanoflakes
,”
RSC Adv.
,
6
(
26
), pp.
21795
22180
.
56.
Nwosu
,
N.
,
Davidson
,
A.
,
Hindle
,
C.
, and
Barker
,
M.
,
2012
, “
On the Influence of Surfactant Incorporation During Electroless Nickel Plating
,”
Ind. Eng. Chem. Res.
,
51
(
16
), pp.
5635
5644
.
57.
Sohrabi
,
A.
,
Dolati
,
A.
,
Ghorbani
,
M.
,
Monfared
,
A.
, and
Stroeve
,
P.
,
2010
, “
Nanomechanical Properties of Functionally Graded Composite Coatings: Electrodeposited Nickel Dispersions Containing Silicon Micro-and Nanoparticles
,”
Mater. Chem. Phys.
,
121
(
3
), pp.
497
505
.
58.
Zielinska
,
K.
,
Stankiewicz
,
A.
, and
Szczygiel
,
I.
,
2012
, “
Electroless Deposition of Ni-P-Nano-ZrO2 Composite Coatings in the Presence of Various Types of Surfactants
,”
J. Colloid Interface Sci.
,
377
(
1
), pp.
362
367
.
59.
Sankara Narayanan
,
T. S. N.
, and
Seshadri
,
S. K.
,
2013
, “Electro- and Electroless Composite Coatings,”
Encyclopedia of Tribology
,
Q. J.
Wang
, and
Y. W.
Chung
, eds.,
Springer
,
Boston, MA
, pp.
905
918
.
60.
Guglielmi
,
N.
,
1972
, “
Kinetics of the Deposition of Inert Particles From Electrolytic Baths
,”
J. Electrochem. Soc.
,
119
(
8
), pp.
1009
1012
.
61.
Vitry
,
V.
,
Kanta
,
A.-F.
, and
Delaunois
,
F.
,
2011
, “
Mechanical and Wear Characterization of Electroless Nickel-Boron Coatings
,”
Surf. Coat. Technol.
,
206
(
7
), pp.
1879
1885
.
62.
Vitry
,
V.
,
Kanta
,
A.-F.
,
Dille
,
J.
, and
Delaunois
,
F.
,
2012
, “
Structural State of Electroless Nickel–Boron Deposits (5 wt% B): Characterization by XRD and TEM
,”
Surf. Coat. Technol.
,
206
(
16
), pp.
3444
3449
.
63.
Vitry
,
V.
,
Bonin
,
L.
, and
Malet
,
L.
,
2018
, “
Chemical, Morphological, and Structural Characterization of Electroless Duplex NiP/NiB Coatings on Steel
,”
Surf. Eng.
,
34
(
6
), pp.
475
484
.
64.
Pal
,
S.
,
Verma
,
N.
,
Jayaram
,
V.
,
Biswas
,
S. K.
, and
Riddle
,
Y.
,
2011
, “
Characterization of Phase Transformation Behavior and Microstructural Development of Electroless Ni-B Coating
,”
Mater. Sci. Eng., A
,
528
(
28
), pp.
8269
8276
.
65.
Huang
,
H.-C.
,
Chung
,
S.-T.
, and
Pan
,
S.-J.
,
2010
, “
Microstructure Evolution and Hardening Mechanisms of Ni-P Electrodeposits
,”
Surf. Coat. Technol.
,
205
(
7
), pp.
2097
2103
.
66.
Zhou
,
Y.
,
Erb
,
U.
, and
Aust
,
K. T.
,
2003
, “
The Effects of Triple Junctions and Grain Boundaries on Hardness and Young's Modulus in Nanostructured Ni-P
,”
Scr. Mater.
,
48
(
6
), pp.
825
830
.
67.
Schaefer
,
H. E.
,
Wurschum
,
R.
, and
Birringer
,
R.
,
1988
, “
Structure of Nanometer-Sized Polycrystalline Iron Investigated by Positron Lifetime Spectroscopy
,”
Phys. Rev. B
,
38
(
14
), p.
9545
.
68.
Xu
,
J.
,
Wang
,
G. D.
,
Lu
,
X.
,
Liu
,
L.
,
Munroe
,
P.
, and
Xie
,
Z.-H.
,
2014
, “
Mechanical and Corrosion Resistant Properties of Ti–Nb–Si–N Nanocomposite Films Prepared by a Double Glow Discharge Plasma Technique
,”
Ceram. Int.
,
40
(
6
), pp.
8621
8630
.
69.
Zhang
,
P.
,
Wang
,
L.
, and
Nie
,
X.
,
2007
, “
Tribological Properties of a-C/Cr(N) Coatings in Micro and Nanoscales
,”
Surf. Coat. Technol.
,
201
(
9–11
), pp.
5176
5181
.
70.
Duan
,
B. Z.
,
Zhang
,
P. Z.
,
Wei
,
X. F.
,
Wang
,
L.
,
Wei
,
D. B.
, and
Zhen
,
D. D.
,
2015
, “
Effects of Elements W and C on Microstructure and Wear Property of γ-TiAl Surface Alloying Layer
,”
Surf. Eng.
,
31
(
12
), pp.
942
948
.
71.
Suresh
,
S.
, and
Giannakopoulos
,
A. E.
,
1998
, “
A new Method for Estimating Residual Stresses by Instrumented Sharp Indentation
,”
Acta Mater.
,
46
(
16
), pp.
5755
5767
.
72.
Wang
,
Z.
,
Song
,
M.
,
Sun
,
V.
, and
He
,
Y.
,
2011
, “
Effects of Particle Size and Distribution on the Mechanical Properties of SiC Reinforced Al–Cu Alloy Composites
,”
Mater. Sci. Eng. A
,
528
(
3
), pp.
1131
1137
.
73.
Song
,
M.
, and
Haung
,
D.
,
2007
, “
Experimental and Modeling of the Coupled Influences of Variously Sized Particles on the Tensile Ductility of SiCp/Al Metal Matrix Composites
,”
Metall. Mater. Trans. A
,
38
(
9
), pp.
2127
2137
.
74.
Song
,
M.
, and
He
,
Y. H.
,
2010
, “
Effects of Die-Pressing Pressure and Extrusion on the Microstructures and Mechanical Properties of SiC Reinforced Pure Aluminum Composites
,”
Mater. Des.
,
31
(
2
), pp.
985
989
.
75.
Park
,
J. G.
,
Keum
,
D. H.
, and
Lee
,
Y. H.
,
2015
, “
Strengthening Mechanisms in Carbon Nanotube-Reinforced Aluminum Composites
,”
Carbon
,
95
, pp.
690
698
.
76.
Zhang
,
X.
,
Li
,
W.
,
Ma
,
J.
,
Deng
,
Y.
,
Li
,
Y.
,
Yang
,
M.
,
Zhou
,
Y.
,
Zhang
,
X.
, and
Dong
,
P.
,
2020
, “
Temperature Dependent Strengthening Mechanisms and Yield Strength for CNT/Metal Composites
,”
Compos. Struct.
,
244
, p.
112246
.
77.
Kelly
,
A.
, and
Tyson
,
W. R.
,
1965
, “
Tensile Properties of Fibre-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum
,”
J. Mech. Phys. Solids.
,
13
(
6
), pp.
329
350
.
78.
Medvedovski
,
E.
,
2001
, “
Wear-resistant Engineering Ceramics
,”
Wear
,
249
(
9
), pp.
821
828
.
79.
Franco
,
M.
,
Sha
,
W.
,
Malinov
,
S.
, and
Liu
,
H.
,
2014
, “
Micro-Scale Wear Characteristics of Electroless Ni-P/SiC Composite Coating Under two Different Sliding Conditions
,”
Wear
,
317
(
1–2
), pp.
254
264
.
80.
Rodrigo
,
P.
,
Campo
,
M.
,
Torres
,
B.
,
Escalera
,
M. D.
,
Otero
,
E.
, and
Rams
,
J.
,
2009
, “
Microstructure, and Wear Resistance of Al-SiC Composites Coatings on ZE41 Magnesium Alloy
,”
Appl. Surf. Sci.
,
255
(
22
), pp.
9174
9181
.
81.
Charitidis
,
C. A.
,
2010
, “
Nanomechanical and Nanotribological Properties of Carbon-Based Thin Films: A Review
,”
Int. J. Refract. Met. Hard Mater.
,
28
(
1
), pp.
51
70
.
82.
Masanta
,
M.
,
Shariff
,
S. M.
, and
Choudhury
,
A. R.
,
2011
, “
Evaluation of Modulus of Elasticity, Nano-Hardness and Fracture Toughness of TiB2-TiC-Al2O3 Composite Coating Developed by SHS and Laser Cladding
,”
Mater. Sci. Eng. A
,
528
(
16–17
), pp.
5327
5335
.
83.
Leyland
,
A.
, and
Matthews
,
A.
,
2000
, “
On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Film Approach to Optimized Tribological Behavior
,”
Wear
,
246
(
1–2
), pp.
1
11
.
84.
Mergler
,
Y. J.
,
van Kampen
,
R. J.
,
Nauta
,
W. J.
,
Schaake
,
R. P.
,
Raas
,
B.
,
van Griensven
,
J. G. H.
, and
Meesters
,
C. J. M.
,
2005
, “
Influence of Yield Strength and Toughness on Friction and Wear of Polycarbonate
,”
Wear
,
258
(
5–6
), pp.
915
923
.
85.
Matjeke
,
V. J.
,
van der Merwe
,
M. J.
,
Phasha
,
J. W.
,
Bolokang
,
A. S.
, and
Moopanar
,
C.
,
2016
, “
Effect of Yield Strength on Wear Rates of Railway Wheels
,”
J. South. Afr. Inst. Min. Metall.
,
116
(
10
), pp.
947
955
.
86.
Xin
,
B.
,
Zhang
,
A.
,
Han
,
J.
,
Su
,
B.
, and
Meng
,
J.
,
2020
, “
Tuning Composition and Microstructure by Doping Ti and C for Enhancing Mechanical Property and Wear Resistance of Al0.2Co1.5CrFeNi1.5Ti0.5 High Entropy Alloy Matrix Composites
,”
J. Alloys Compd.
,
836
, p.
155273
.
87.
Chen
,
Y.
,
Bakshi
,
S. R.
, and
Agarwal
,
A.
,
2010
, “
Correlation Between Nanoindentation and Nanoscratch Properties of Carbon Nanotube Reinforced Aluminum Composite Coatings
,”
Surf. Coat. Technol.
,
204
(
16–17
), pp.
2709
2715
.
88.
Farhat
,
Z.
,
Li
,
Z.
,
Jarjoura
,
G.
,
Fayyad
,
E.
,
Abdullah
,
A.
, and
Hassan
,
M.
,
2019
, “
Synthesis, and Characterization of Scratch Resistant Ni-P-Ti-Based Composite Coating
,”
Tribolo. Trans.
,
62
(
5
), pp.
880
896
.
89.
Bhushan
,
B.
,
2005
, “
Nanotribology and Nanomechanics
,”
Wear
,
259
(
7–12
), pp.
1507
1531
.
90.
Liu
,
J.
,
Jiang
,
H.
,
Cheng
,
Q.
, and
Wang
,
C.
,
2018
, “
Investigation of Nano-Scale Scratch and Stick-Slip Behaviors of Polycarbonate Using Atomic Force Microscopy
,”
Tribol. Int.
,
125
, pp.
59
65
.
91.
Bakshi
,
S. R.
,
Lahiri
,
D.
,
Patel
,
R. R.
, and
Agarwal
,
A.
,
2010
, “
Nanoscratch Behavior of Carbon Nanotube Reinforced Aluminum Coatings
,”
Thin Solid Films
,
518
(
6
), pp.
1703
1711
.
92.
Parhizkar
,
N.
,
Dolati
,
A.
,
Aghababazadeh
,
R.
, and
Lalegani
,
Z.
,
2016
, “
Electrochemical Deposition of Ni-TiN Nanocomposite Coatings and the Effect of Sodium Dodecyl Sulphate Surfactant on the Coating Properties
,”
Bull. Mater. Sci.
,
39
(
4
), pp.
1021
1027
.
93.
Moron
,
R. C.
,
Rodriguez-Castro
,
G. A.
,
Jimenez-Tinoco
,
L. F.
,
Meneses-Amador
,
A.
,
Méndez-Méndez
,
J. V.
,
Escobar-Hernández
,
J.
,
Reséndiz-Calderón
,
C. D.
, and
Nava-Sánchez
,
J. L.
,
2018
, “
Multipass Scratch Behavior of Borided and Nitrided H13 Steel
,”
J. Mater. Eng. Perform.
,
27
(
8
), pp.
3886
3899
.
94.
Kumar
,
M.
,
Mishra
,
S.
, and
Mitra
,
R.
,
2013
, “
Effect of Ar: N2 Ratio on Structure and Properties of Ni–TiN Nanocomposite Thin Films Processed by Reactive RF/DC Magnetron Sputtering
,”
Surf. Coat. Technol.
,
228
, pp.
100
114
.
95.
Bahadormanesh
,
B.
,
Dolati
,
A.
, and
Ahmadi
,
M. R.
,
2011
, “
Electrodeposition, and Characterization of Ni-Co/SiC Nanocomposite Coatings
,”
J. Alloys Compd.
,
509
(
39
), pp.
9406
9412
.
You do not currently have access to this content.