Abstract

This paper provides the main causes of asymmetric or directional deformation of surface roughness based on a transient non-Newtonian thermal elastohydrodynamic lubrication (EHL) model, where the contact materials have different thermal conductivities and elastic moduli. In order to obtain the actual shape of the surface asperity, the surface shapes of contact bodies are evaluated separately. It is clarified that the asymmetric deformation of the asperities appears due to two causes. One depends on the slide-roll ratio (SRR) and the difference in thermal conductivity between contact materials, and the other is caused by the contact pressure between the asperities through the oil film.

References

1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication
,
Pergamon
,
Oxford
.
2.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1981
,
Ball Bearing Lubrication
,
John Wiley & Sons
,
New York
.
3.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Past, Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
213
(
5
), pp.
317
333
.
4.
Gohar
,
R.
,
2001
,
Elastohydrodynamics
,
Imperial College
,
London
.
5.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubr. Sci.
,
18
(
4
), pp.
265
291
.
6.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
Tribol. Trans.
,
54
(
3
), pp.
470
496
.
7.
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
8.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
228
(
11
), pp.
1217
1242
.
9.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
.
10.
Kaneta
,
M.
, and
Yang
,
P.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
.
11.
Kaneta
,
M.
,
Yang
,
P.
, and
Hooke
,
C. J.
,
2010
, “
Effects of the Thermal Conductivity of Contact Materials on Elastohydrodynamic Lubrication Characteristics
,”
Proc. Inst. Mech. Eng. Part C: J. Eng. Tribol.
,
224
(
12
), pp.
2577
2587
.
12.
Kaneta
,
M.
,
Yang
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2015
, “
Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
229
(
8
), pp.
929
939
.
13.
Kaneta
,
M.
,
Sperka
,
P.
,
Yang
,
P.
,
Krupka
,
I.
,
Yang
,
P.
, and
Hartl
,
M.
,
2018
, “
Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,”
STLE Trans.
,
61
(
5
), pp.
869
879
.
14.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
.
15.
Björling
,
M.
,
Isaksson
,
P.
,
Marklund
,
P.
, and
Larsson
,
R.
,
2012
, “
The Influence of DLC on EHL Friction Coefficient
,”
Tribol. Lett.
,
47
(
2
), pp.
285
294
.
16.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
.
17.
Habchi
,
W.
,
2014
, “
A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts
,”
Tribol. Int.
,
73
, pp.
57
68
.
18.
Cui
,
J.
,
Yang
,
P.
,
Kaneta
,
M.
, and
Krupka
,
I.
,
2017
, “
Numerical Study on the Interaction of Transversely Oriented Ridges in Thermal Elastohydrodynamic Lubrication Point Contacts Using the Eyring Shear-Thinning Model
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
231
(
1
), pp.
93
106
.
19.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Dimples on Tribo-Characteristics in Non-Newtonian Thermal Elastohydrodynamic Lubrication Point Contacts With Different Mechanical and Thermal Properties
,”
ASME J. Tribol.
,
142
(
4
), p.
041601
.
20.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Thermal Conductivity in Point Contacts With Longitudinal Roughness on Abnormal Pressure Distribution
,”
ASME J. Tribol.
,
142
(
12
), p.
121601
.
21.
Krupka
,
I.
,
Hartl
,
M.
,
Matsuda
,
K.
,
Nishikawa
,
H.
,
Wang
,
J.
,
Guo
,
F.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2019
, “
Deformation of Rough Surfaces in Point EHL Contacts
,”
Tribol. Lett.
,
67
(
2
), p.
33
.
22.
Bair
,
S.
,
2004
, “
Actual Eyring Models for Thixotropy and Shear-Thinning: Experimental Validation and Application to EHD
,”
ASME J. Tribol.
,
126
(
4
), pp.
728
732
.
23.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
24.
Habchi
,
W.
, and
Bair
,
S.
,
2013
, “
Quantitative Compressibility Effects in Thermal Elastohydrodynamic Circular Contacts
,”
ASME J. Tribol.
,
135
(
1
), p.
011502
.
25.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
2000
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
1
), pp.
17
27
.
26.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol.
,
214
(
4
), pp.
337
342
.
27.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
Traction in EHL Line Contacts Using Free Volume Pressure-Viscosity Relationship With Thermal and Shear-Thinning Effects
,”
ASME J. Tribol.
,
131
(
1
), p.
011503
.
28.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
29.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
.
30.
Ohno
,
N.
,
2007
, “
High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,”
Tribol. Int.
,
40
(
2
), pp.
233
238
.
31.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
Amsterdam
.
32.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
1
), p.
22
.
33.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
.
34.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
(
10
), p.
106059
.
35.
Johnson
,
K. L.
, and
Cameron
,
R.
,
1967
, “
Shear Behaviour of Elastohydrodynamic Oil Films at High Rolling Contact Pressures
,”
Proc. R. Soc. A
,
182
(
1
), pp.
307
319
.
You do not currently have access to this content.