Abstract

The recent supercritical CO2 (sCO2) power turbine configuration development introduced a cooling zone parametric model to overcome the existing technical challenges. The parametric model is the annulus cooling passage with a supercritical CO2 coolant consisting of radial clearance, length, and shaft diameter are the geometrical parameters. This study aims to investigate the pressure profile and stiffness coefficient of the cooling passage using computational fluid dynamics and to explore the validity of the assumptions that exist in the simplified analysis. The effect of eccentricity ratio, shaft speed, and axial length are investigated. The result showed that, like the hydrodynamic bearing, the supercritical CO2 swirling in the annulus passage produces substantial mechanical support on the shaft. Hence, the cooling zone stiffness contribution should be included in the supercritical CO2 turbine shaft vibration analysis which is not presently taken into consideration.

References

1.
White
,
M. T.
,
Bianchi
,
G.
,
Chai
,
L.
,
Tassou
,
S. A.
, and
Sayma
,
A. I.
,
2021
, “
Review of Supercritical CO2 Technologies and Systems for Power Generation
,”
Appl. Therm. Eng.
,
185
(
2021
), p.
116447
.
2.
Utamura
,
M.
,
Hasuike
,
H.
,
Ogawa
,
K.
,
Yamamoto
,
T.
, and
Fukushima
,
T.
,
2013
, “
Demonstration of Supercritical CO2 Closed Regenerative Brayton Cycle in a Bench-Scale Experiment
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
, Paper No. GT 2012-68697.
3.
Li
,
J.
,
Gurgenci
,
H.
,
Guan
,
Z.
,
Li
,
J.
,
Uddin
,
M. S.
, and
Li
,
L.
,
2019
, “
Bearing and Seal Selection for a High-Temperature Supercritical CO2 Turbine
,”
Proceedings of Global Power and Propulsion Society
,
Beijing, China
,
Sept. 16–18
.
4.
Uddin
,
M.
,
Gurgenci
,
H.
,
Guan
,
Z.
,
Klimenko
,
A.
,
Li
,
J.
,
Jishun
,
L.
, and
Li
,
L.
,
2021
, “
Design a Cooling Pillow to Support a High-Speed Supercritical CO2 Turbine Shaft
,”
Appl. Therm. Eng.
,
196
, p.
117345
.
5.
Kumar
,
M.
,
Chandravanshi
,
M. L.
, and
Mishra
,
P. C.
,
2021
, “
Geometrical Analysis of Elliptical Journal Bearing Lubricated With Newtonian Fluid
,”
AIP Conf. Proc.
,
2341
(
1
), p.
020032
.
6.
Kyrkou
,
M. E.
, and
Nikolakopoulos
,
P. G.
,
2020
, “
Simulation of Thermo-Hydrodynamic Behavior of Journal Bearings, Lubricating With Commercial Oils of Different Performance
,”
Simul. Modell. Pract. Theory
,
104
, p.
102128
.
7.
Erhunmwun
,
I. D.
, and
Akpobi
,
J.
,
2019
, “
Pressure Distribution of Fluid in a Journal Bearing Considering the Effect of Side or End Leakage, Using the Two Dimensional Reynolds Model
,”
Int. J. Mater. Eng. Technol.
,
002
(
2019
), pp.
08
15
.
8.
Zhang
,
X.
,
Yinn
,
Z.
,
Gao
,
G.
, and
Li
,
Z.
,
2015
, “
Determination of Stiffness Coefficients of Hydrodynamic Water-Lubricated Plain Journal Bearings
,”
Tribol. Int.
,
85
(
2015
), pp.
37
47
.
9.
Tiwari
,
P.
, and
Kumar
,
V.
,
2014
, “
Analysis of Hydrodynamic Journal Bearing Using CFD and FSI Technique
,”
Int. J. Eng. Res. Technol.
,
3
(
7
), pp.
1210
1215
.
10.
Gao
,
G.
,
Yin
,
Z.
,
Jiang
,
D.
, and
Zhang
,
X.
,
2014
, “
Numerical Analysis of Plain Journal Bearing Under Hydrodynamic Lubrication by Water
,”
Tribol. Int.
,
75
(
2014
), pp.
31
38
.
11.
Mane
,
R. M.
, and
Soni
,
S.
,
2013
, “
Analysis of Hydrodynamic Plain Journal Bearing
,”
Proceedings of the 2013 COMSOL Conference
,
Bangalore, India
,
Oct. 23
, pp.
1
5
.
12.
Kasolanga
,
S.
,
Ahmada
,
M. A.
,
Joyceb
,
R. D.
, and
Taib
,
C. F. M.
,
2012
, “
Preliminary Study of Pressure Profile in Hydrodynamic Lubrication Journal Bearing
,”
Procedia Eng.
,
41
, pp.
1743
1749
.
13.
Guo
,
Z.
,
Hirano
,
T.
, and
Kirk
,
R. G.
,
2005
, “
Application of CFD Analysis for Rotating Machinery—Part I: Hydrodynamic, Hydrostatic Bearings, and Squeeze Film Damper
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
445
451
.
14.
Shin
,
D.
,
Yang
,
J.
,
Tong
,
X.
,
Suh
,
J.
, and
Palazzolo
,
A.
,
2021
, “
A Review of Journal Bearing Thermal Effects on Rotordynamic Response
,”
ASME J. Tribol.
,
143
(
3
), p.
031803
.
15.
Jin
,
Y.
, and
Yuan
,
X.
,
2020
, “
Analytical Method for Hydrodynamic Force in Finite-Length Tilting-Pad Journal Bearing Including Turbulence Effect
,”
ASME J. Tribol.
,
142
(
9
), p.
091802
.
16.
Xu
,
G.
,
Zhou
,
J.
,
Geng
,
H.
,
Lu
,
M.
,
Yang
,
L.
, and
Yu
,
L.
,
2015
, “
Research on the Static and Dynamic Characteristics of Misaligned Journal Bearing Considering the Turbulent and Thermohydrodynamic Effects
,”
ASME J. Tribol.
,
137
(
2
), p.
024504
.
17.
Doustia
,
S.
, and
Allairea
,
P.
,
2016
, “
A Compressible Hydrodynamic Analysis of Journal Bearings Lubricated With Supercritical Carbon Dioxide
,”
Supercritical CO2 Power Cycles Symposium
,
San Antonio, TX
,
Mar. 28–31
.
18.
ANSYS Theory Guide, Releases 12 and 13.
19.
Epelle
,
E. I.
, and
Gerogiorgis
,
D. I.
,
2017
, “
A Multiparametric CFD Analysis of Multiphase Annular Flows for Oil and Gas Drilling Application
,”
Comput. Chem. Eng.
,
106
, pp.
645
661
.
20.
Dang
,
C.
, and
Hihara
,
E.
,
2004
, “
In-Tube Cooling Heat Transfer of Supercritical Carbon Dioxide. Part 2. Comparison of Numerical Calculation With Different Turbulence Models
,”
Int. J. Refrig.
,
27
(
7
), pp.
748
760
.
You do not currently have access to this content.