Abstract

This paper proposes a simplistic approach toward estimating incremental wear in a multi-contact scenario using a vibrational analysis approach and in turn goes a step forward to model its associated sound. Predicted wear depth and frictional sound are compared to the experimental values obtained using a standardized pin-on-disc tribometer setup affixed with a free-field microphone to capture air-borne noise. The results show good conformity between the proposed analytical model values and the standardized experiments, hence ensuing that within certain limitations, the proposed model and the intended approach can effectively be used as a good estimator of wear and its sound in a multi-contact scenario.

References

1.
Borghesani
,
P.
,
Smith
,
W. A.
,
Zhang
,
X.
,
Feng
,
P.
,
Antoni
,
J.
, and
Peng
,
Z.
,
2018
, “
A New Statistical Model for Acoustic Emission Signals Generated From Sliding Contact in Machine Elements
,”
Tribol. Int.
,
127
, pp.
412
419
.
2.
Basit
,
K.
,
Shams
,
H.
,
Khan
,
M. A.
, and
Mansoor
,
A.
,
2020
, “
Empirical Modelling of Frictional Noise and Two-Point Contact Using Ball-On-Disc Tribometer
,”
TESConf 2020 – 9th International Conference on Through-life Engineering Services
,
Cranfield, UK
,
Oct. 23
.
3.
Khan
,
M. A.
,
Hussnain
,
R. B.
,
Basit
,
K.
,
Safdar
,
M.
, and
Raza
,
M.
,
2013
, “
Effect of Lubricant on Wear Debris Color Diagnosis
,”
J. Mech. Eng. Technol.
,
5
(
2
), pp.
89
99
.
4.
Wang
,
L.
,
Sheng
,
X.
, and
Luo
,
J.
,
2022
, “
A Peridynamic Frictional Contact Model for Contact Fatigue Crack Initiation and Propagation
,”
Eng. Fract. Mech.
,
264
, p.
108338
.
5.
Wang
,
L.
,
Duan
,
J.
,
He
,
M.
,
Liu
,
Y.
, and
Bao
,
Y.
,
2023
, “
Study on Antifriction Mechanism of Surface Textured Elliptical Bearings
,”
ASME J. Tribol.
,
145
(
1
), p.
011702
.
6.
Yin
,
N.
,
Xing
,
Z.
,
He
,
K.
, and
Zhang
,
Z.
,
2023
, “
Tribo-Informatics Approaches in Tribology Research: A Review
,”
Friction
,
11
(
1
), pp.
1
22
.
7.
Raadnui
,
S.
,
2019
, “
Spur Gear Wear Analysis as Applied for Tribological Based Predictive Maintenance Diagnostics
,”
Wear
,
426–427
, pp.
1748
1760
.
8.
Vianna
,
W. O. L.
, and
Yoneyama
,
T.
,
2018
, “
Predictive Maintenance Optimization for Aircraft Redundant Systems Subjected to Multiple Wear Profiles
,”
IEEE Syst. J.
,
12
(
2
), pp.
1170
1181
.
9.
Shams
,
H.
,
Basit
,
K.
,
Khan
,
M. A.
,
Mansoor
,
A.
, and
Saleem
,
S.
,
2021
, “
Scalable Wear Resistant 3D Printed Slippery Liquid Infused Porous Surfaces (SLIPS)
,”
Addit. Manuf.
,
48
(
A
).
10.
Shams
,
H.
,
Basit
,
K.
,
Khan
,
M. A.
, and
Mansoor
,
A.
,
2020
, “
Wear Behavior of 3D Printed PLA Surfaces for Superhydrophobic Interaction
,”
TESConf 2020 – 9th International Conference on Through-life Engineering Services
,
Cranfield, UK
,
Oct. 23
.
11.
Shahid
,
M. A.
,
Khan
,
T. M.
,
Lontin
,
K.
,
Basit
,
K.
, and
Khan
,
M.
,
2020
, “
Multiple Point Contact Wear Prediction and Source Identification Scheme Using a Single Channel Blended Airborne Acoustic Signature
,”
IFAC-PapersOnLine
,
53
(
3
), pp.
283
288
.
12.
Geng
,
Z.
,
Puhan
,
D.
, and
Reddyhoff
,
T.
,
2019
, “
Using Acoustic Emission to Characterize Friction and Wear in Dry Sliding Steel Contacts
,”
Tribol. Int.
,
134
, pp.
394
407
.
13.
Shanbhag
,
V. V.
,
Rolfe
,
B. F.
,
Arunachalam
,
N.
, and
Pereira
,
M. P.
,
2018
, “
Investigating Galling Wear Behaviour in Sheet Metal Stamping Using Acoustic Emissions
,”
Wear
,
414–415
, pp.
31
42
.
14.
Lychagin
,
D. V.
,
Filippov
,
A. V.
,
Kolubaev
,
E. A.
,
Novitskaia
,
O. S.
,
Chumlyakov
,
Y. I.
, and
Kolubaev
,
A. V.
,
2018
, “
Dry Sliding of Hadfield Steel Single Crystal Oriented to Deformation by Slip and Twinning: Deformation, Wear, and Acoustic Emission Characterization
,”
Tribol. Int.
,
119
, pp.
1
18
.
15.
Wang
,
J.
,
Huo
,
L.
,
Liu
,
C.
,
Peng
,
Y.
, and
Song
,
G.
,
2018
, “
Feasibility Study of Real-Time Monitoring of Pin Connection Wear Using Acoustic Emission
,”
Appl. Sci.
,
8
(
10
), p.
1775
.
16.
Yan
,
W.
,
O’Dowd
,
N. P.
, and
Busso
,
E. P.
,
2002
, “
Numerical Study of Sliding Wear Caused by a Loaded Pin on a Rotating Disc
,”
J. Mech. Phys. Solids
,
50
(
3
), pp.
449
470
.
17.
Rigney
,
D. A.
,
1988
, “
Sliding Wear of Metals
,”
Annu. Rev. Mater. Sci.
,
18
(
1
), pp.
141
163
.
18.
Jahangiri
,
M.
,
Hashempour
,
M.
,
Razavizadeh
,
H.
, and
Rezaie
,
H. R.
,
2012
, “
Application and Conceptual Explanation of an Energy-Based Approach for the Modelling and Prediction of Sliding Wear
,”
Wear
,
274–275
, pp.
168
174
.
19.
Noraphaiphipaksa
,
N.
,
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2013
, “
Numerical and Experimental Investigations on Fretting Fatigue: Relative Slip, Crack Path, and Fatigue Life
,”
Eng. Fract. Mech.
,
112–113
, pp.
58
71
.
20.
Karupannasamy
,
D. K.
,
Kailas
,
S. V.
,
Shankar
,
S.
, and
Sasikumar
,
K. S. K.
,
2022
, “
A Predictive Model for Galling Phenomenon and Its Applicability for Deep Drawing Processes
,”
ASME J. Tribol.
,
144
(
1
), p.
011705
.
21.
Dhope
,
K.
, and
Tallur
,
S.
,
2018
, “
Analytical Model for Monitoring of AFM Tip Wear Through Resonance Frequency Measurements
,”
Proceedings of the 2018 4th IEEE International Conference on Emerging Electronics (ICEE)
,
IEEE
, pp.
1
4
.
22.
Teymuri Sindi
,
C.
,
2019
, “
Development of an Acoustic Emission Model for Adhesive Wear
,”
Mater. Eval.
,
77
(
4
), pp.
529
534
.
23.
Stavropoulos
,
P.
,
Papacharalampopoulos
,
A.
, and
Souflas
,
T.
,
2020
, “
Indirect Online Tool Wear Monitoring and Model-Based Identification of Process-Related Signal
,”
Adv. Mech. Eng.
,
12
(
5
), p.
168781402091920
.
24.
Zhou
,
Y.
,
Peng
,
M.
,
Zuo
,
X.
, and
Xu
,
J.
,
2022
, “
Correlation Between Friction Coefficient and Friction Vibration in Running-In Process Based on Cross Recurrence Plots
,”
ASME J. Tribol.
,
144
(
1
), p.
011703
.
25.
Hasan
,
M. S.
,
Kordijazi
,
A.
,
Rohatgi
,
P. K.
, and
Nosonovsky
,
M.
,
2022
, “
Triboinformatics Approach for Friction and Wear Prediction of Al-Graphite Composites Using Machine Learning Methods
,”
ASME J. Tribol.
,
144
(
1
), p.
011701
.
26.
Guilbault
,
R.
, and
Lalonde
,
S.
,
2019
, “
A Stochastic Prediction of Roughness Evolution in Dynamic Contact Modelling Applied to Gear Mild Wear and Contact Fatigue
,”
Tribol. Int.
,
140
, p.
105854
.
27.
Feng
,
K.
,
Ni
,
Q.
, and
Zheng
,
J.
,
2022
, “
Vibration-Based System Degradation Monitoring Under Gear Wear Progression
,”
Coatings
,
12
(
7
), p.
892
.
28.
Ma
,
W.
,
Li
,
X.
,
Wang
,
Q.
, and
Jiang
,
X.
,
2022
, “
Theoretical Analysis of the Effects of Grain Size and Orientation on Rail Damage
,”
Eng. Fract. Mech.
,
259
, p.
108148
.
29.
le Bot
,
A.
,
2017
, “
Noise of Sliding Rough Contact
,”
J. Phys.: Conf. Ser.
,
797
, p.
012006
.
30.
Xu
,
J. Y.
,
Mo
,
J. L.
,
Huang
,
B.
,
Wang
,
X. C.
,
Zhang
,
X.
, and
Zhou
,
Z. R.
,
2018
, “
Reducing Friction-Induced Vibration and Noise by Clearing Wear Debris From Contact Surface by Blowing Air and Adding Magnetic Field
,”
Wear
,
408–409
, pp.
238
247
.
31.
Josue da Silva
,
P.
, and
Alvares
,
A. J.
,
2020
, “
Investigation of Tool Wear in Single Point Incremental Sheet Forming
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
234
(
1–2
), pp.
170
188
.
32.
Yang
,
Y. Y.
,
2013
, “
Solutions of Dissimilar Material Contact Problems
,”
Eng. Fract. Mech.
,
100
, pp.
92
107
.
33.
Zhang
,
H.
,
Wang
,
W.
,
Zhang
,
S.
, and
Zhao
,
Z.
,
2017
, “
Modeling of Elastic Finite-Length Space Rolling-Sliding Contact Problem
,”
Tribol. Int.
,
113
, pp.
224
237
.
34.
Wang
,
X. C.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Wang
,
D. W.
,
Chen
,
G. X.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2016
, “
Squeal Noise of Friction Material With Groove-Textured Surface: An Experimental and Numerical Analysis
,”
ASME J. Tribol.
,
138
(
2
), p.
021401
.
35.
Zhang
,
Z.
,
Yin
,
N.
,
Chen
,
S.
, and
Liu
,
C.
,
2021
, “
Tribo-Informatics: Concept, Architecture, and Case Study
,”
Friction
,
9
(
3
), pp.
642
655
.
36.
Xiang
,
Z. Y.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Massi
,
F.
,
Tang
,
B.
, and
Zhou
,
Z. R.
,
2020
, “
Contact Behaviour and Vibrational Response of a High-Speed Train Brake Friction Block
,”
Tribol. Int.
,
152
, p.
106540
.
37.
Wang
,
H.
,
Liu
,
Z.
,
Zou
,
L.
, and
Yang
,
J.
,
2017
, “
Influence of Both Friction and Wear on the Vibration of Marine Water Lubricated Rubber Bearing
,”
Wear
,
376–377
, pp.
920
930
.
38.
Yonemura
,
S.
,
Zhou
,
L.
, and
Talke
,
F. E.
,
2003
, “
An Investigation of Slider Vibrations in Near Contact Recording Using a Digital Laser Doppler Vibrometer
,”
ASME J. Tribol.
,
125
(
3
), pp.
571
575
.
39.
Lazzari
,
A.
,
Tonazzi
,
D.
, and
Massi
,
F.
,
2019
, “
Squeal Propensity Characterization of Brake Lining Materials Through Friction Noise Measurements
,”
Mech. Syst. Signal Process.
,
128
, pp.
216
228
.
40.
Denimal
,
E.
,
Nacivet
,
S.
,
Nechak
,
L.
, and
Sinou
,
J.-J.
,
2017
, “
On the Influence of Multiple Contact Conditions on Brake Squeal
,”
Proc. Eng.
,
199
, pp.
3260
3265
.
41.
Sanchez-Marin
,
F.
,
Roda-Casanova
,
V.
, and
Porras-Vazquez
,
A.
,
2018
, “
A New Analytical Model to Predict the Transversal Deflection Under Load of Stepped Shafts
,”
Int. J. Mech. Sci.
,
146–147
, pp.
91
104
.
42.
Khafidh
,
M.
,
Setiyana
,
B.
,
Jamari
,
J.
,
Masen
,
M. A.
, and
Schipper
,
D. J.
,
2018
, “
Understanding the Occurrence of a Wavy Wear Track on Elastomeric Materials
,”
Wear
,
412–413
, pp.
23
29
.
43.
Earles
,
S. W. E.
, and
Badi
,
M. N. M.
,
1984
, “
Oscillatory Instabilities Generated in a Double-Pin and Disc Undamped System: A Mechanism of Disc-Brake Squeal
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
198
(
1
), pp.
43
50
.
44.
Earles
,
S. W. E.
, and
Badi
,
M. N. M.
,
1978
, “
On the Interaction of a Two-Pin-Disc System With Reference to the Generation of Disc-Brake Squeal
,”
Automotive Engineering Congress and Exposition
,
Detroit, MI
,
Feb. 1
.
45.
Zerbst
,
U.
,
Lundén
,
R.
,
Edel
,
K.-O.
, and
Smith
,
R. A.
,
2009
, “
Introduction to the Damage Tolerance Behaviour of Railway Rails—A Review
,”
Eng. Fract. Mech.
,
76
(
17
), pp.
2563
2601
.
46.
Earles
,
S. W. E.
, and
Chambers
,
P. W.
,
1987
, “
Disc Brake Squeal Noise Generation: Predicting Its Dependency on System Parameters Including Damping
,”
Int. J. Vehicle Des.
,
8
(
4–6
), pp.
538
552
. https://www.inderscienceonline.com/doi/10.1504/IJVD.1987.061217
47.
Sen
,
O. T.
,
Dreyer
,
J. T.
, and
Singh
,
R.
,
2013
, “
Low Frequency Dynamics of a Translating Friction Element in the Presence of Frictional Guides, as Motivated by a Brake Vibration Problem
,”
J. Sound Vib.
,
332
(
22
), pp.
5766
5788
.
48.
Khan
,
M.
,
Basit
,
K.
,
Khan
,
S.
,
Khan
,
K.
, and
Starr
,
A.
,
2017
, “
Experimental Assessment of Multiple Contact Wear Using Airborne Noise Under Dry and Lubricated Conditions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
231
(
12
), pp.
1503
1516
.
49.
Rao
,
S. S.
,
2019
, “Derivation of Equations,”
Vibration of Continuous Systems
,
John Wiley & Sons, Inc
,
Hoboken, NJ
, pp.
69
85
.
50.
Machado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
51.
Jia
,
K.
, and
Fischer
,
T. E.
,
1997
, “
Sliding Wear of Conventional and Nanostructured Cemented Carbides
,”
Wear
,
203–204
, pp.
310
318
.
52.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
53.
Johnson
,
K. L.
,
1982
, “
One Hundred Years of Hertz Contact
,”
Proc. Inst. Mech. Eng.
,
196
(
1
), pp.
363
378
.
54.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2006
, “
Modeling and Simulation of Wear in a Pin on Disc Tribometer
,”
STLE/ASME International Joint Tribology Conference
,
San Antonio, TX
,
Oct. 22–25
, ASME, pp.
567
575
.
55.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
56.
Harrison
,
M.
,
2004
, “Interior Noise: Assessment and Control,”
Vehicle Refinement
,
Elsevier
,
New York
, pp.
145
233
.
57.
Lontin
,
K.
, and
Khan
,
M. A.
,
2021
, “
Wear and Airborne Noise Interdependency at Asperitical Level: Analytical Modelling and Experimental Validation
,”
Materials
,
14
(
23
), p.
7308
.
You do not currently have access to this content.