Abstract

A systematic process of matrices-based wear profile modeling and a new optimization approach for planetary roller screw mechanism (PRSM) was proposed in this paper to improve the anti-wear performance with varied thread geometries. The wear evolution characteristics of thread surfaces for convex–concave contact and convex–straight contact were captured by incorporating updated axial clearances originated from accumulated thread wear, which provides a new perspective to predict the wear process of PRSM. The results show that the wear depth in convex–concave contact is 22% shallower than convex–straight contact with 105 numbers of cycles, which suggests thread wear can be limited with plausible geometrical parameters. Further analysis showed that as the surface roughness increases, the true equivalent pressure, the plastic strain, and the maximum wear depth become larger. In addition, the effect of the surface textures on the tribological properties of threads is also discussed to improve the applicability of the proposed methodology.

References

1.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
2.
Wang
,
H. B.
,
Zhou
,
C. J.
,
Lei
,
Y. Y.
, and
Liu
,
Z. M.
,
2019
, “
An Adhesive Wear Model for Helical Gears in Line-Contact Mixed Elastohydrodynamic Lubrication
,”
Wear
,
426
, pp.
896
909
.
3.
Auregan
,
G.
,
Fridrici
,
V.
,
Kapsa
,
P.
, and
Rodrigues
,
F.
,
2015
, “
Experimental Simulation of Rolling-Sliding Contact for Application to Planetary Roller Screw Mechanism
,”
Wear
,
332
, pp.
1176
1184
.
4.
Xing
,
M. C.
,
Zhang
,
B. H.
,
Deng
,
P.
,
Xu
,
J. Q.
, and
Cui
,
Y.
,
2022
, “
A Novel Wear Prediction Model for Planetary Roller Screw Based on Universal Sliding Distance Model
,”
Tribol. Int.
,
175
, p.
107851
.
5.
Yao
,
Q.
,
Zhang
,
M. C.
,
Liu
,
Y. S.
, and
Ma
,
S. J.
,
2021
, “
Multi-Objective Optimization of Planetary Roller Screw Mechanism Based on Improved Mathematical Modelling
,”
Tribol. Int.
,
161
, p.
107095
.
6.
Yao
,
Q.
,
Zhang
,
M. C.
, and
Ma
,
S. J.
,
2022
, “
Structural Design for Planetary Roller Screw Mechanism Based on the Developed Contact Modelling
,”
Tribol. Int.
,
171
, p.
107570
.
7.
Yao
,
Q.
,
Zhang
,
M. C.
,
Jiang
,
Q. S.
, and
Ma
,
S. J.
,
2023
, “
Uncertainty Analysis and Reliability Improvement of Planetary Roller Screw Mechanism Using Active Learning Kriging Model
,”
Probab. Eng. Mech.
,
72
, p.
103436
.
8.
Hu
,
R.
,
Wei
,
P. T.
,
Zhou
,
P. L.
,
Liu
,
H. J.
,
Du
,
X. S.
, and
Zhu
,
C. C.
,
2022
, “
A Roller Taper Modification Method for Load Distribution Optimization of Planetary Roller Screw Mechanism
,”
J. Adv. Mech. Des. Syst. Manuf.
,
16
(
3
), pp.
1
19
.
9.
Xiao
,
Y. L.
,
Fu
,
J.
,
Zhao
,
Y. S.
,
Li
,
F. P.
, and
Chen
,
K.
,
2023
, “
Multi-Objective Optimization of Planetary Roller Screw Mechanism Based on Improved Boundary Condition
,”
Int. J. Adv. Manuf. Technol.
,
124
(
11–12
), pp.
4479
4491
.
10.
Yang
,
L.
,
Wang
,
Q.
, and
Rao
,
Y.
,
2021
, “
Searching for Irregular Pin-Fin Shapes for High Temperature Applications Using Deep Learning Methods
,”
Int. J. Therm. Sci.
,
161
, p.
106746
.
11.
Zhang
,
B. Y.
,
Liu
,
H. J.
,
Zhu
,
C. C.
, and
Li
,
Z. M. Q.
,
2019
, “
Numerical Simulation of Competing Mechanism Between Pitting and Micro-Pitting of a Wind Turbine Gear Considering Surface Roughness
,”
Eng. Fail. Anal.
,
104
, pp.
1
12
.
12.
Zhang
,
B. Y.
,
Liu
,
H. J.
,
Bai
,
H. Y.
,
Zhu
,
C. C.
, and
Wu
,
W.
,
2019
, “
Ratchetting-Multiaxial Fatigue Damage Analysis in Gear Rolling Contact Considering Tooth Surface Roughness
,”
Wear
,
428
, pp.
137
146
.
13.
Zhang
,
B. Y.
,
Liu
,
H. J.
,
Zhu
,
C. C.
, and
Ge
,
Y. B.
,
2021
, “
Simulation of the Fatigue-Wear Coupling Mechanism of an Aviation Gear
,”
Friction
,
9
(
6
), pp.
1616
1634
.
14.
Wang
,
M.
,
Sun
,
T. W.
,
Gao
,
X. S.
,
Hu
,
J. Z.
,
Kong
,
D. S.
, and
Zan
,
T.
,
2022
, “
Preload Degradation Mechanism of Double-Nut Ball Screws Revealed by an Innovative Wear Distribution Model
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
236
(
12
), pp.
1653
1666
.
15.
Fallahnezhad
,
K.
,
Liu
,
S.
,
Brinji
,
O.
,
Marker
,
M.
, and
Meehan
,
P. A.
,
2019
, “
Monitoring and Modelling of False Brinelling for Railway Bearings
,”
Wear
,
424
, pp.
151
164
.
16.
Arjmandi
,
M.
,
Ramezani
,
M.
,
Giordano
,
M.
, and
Schmid
,
S.
,
2017
, “
Finite Element Modelling of Sliding Wear in Three-Dimensional Woven Textiles
,”
Tribol. Int.
,
115
, pp.
452
460
.
17.
Arunachalam
,
A. P. S.
, and
Idapalapati
,
S.
,
2019
, “
Material Removal Analysis for Compliant Polishing Tool Using Adaptive Meshing Technique and Archard Wear Model
,”
Wear
,
418
, pp.
140
150
.
18.
Du
,
X.
,
Lu
,
S.
,
Tang
,
R.
,
Li
,
X.
,
Miao
,
J.
,
Wu
,
L.
,
Yang
,
Z.
, and
Chen
,
B.
,
2023
, “
An Efficient Method for Designing High-Performance Planetary Roller Screw Mechanism With Low Contact Stress
,”
Tribol. Int.
,
187
, p.
108709
.
19.
Fu
,
X. J.
,
Liu
,
G.
,
Ma
,
S. J.
,
Tong
,
R. T.
, and
Lim
,
T. C.
,
2017
, “
A Comprehensive Contact Analysis of Planetary Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
139
(
1
), p.
012302
.
20.
Litvin
,
F. L.
, and
Fuentes
,
A.
,
2004
,
Gear Geometry and Applied Theory
,
Cambridge University Press
,
Cambridge, UK
.
21.
Ciarlet
,
P. G. A. L.
, and
Li
,
T.-T.
,
2008
,
Differential Geometry: Theory and Applications.
,
World Scientific Publishing Company
,
Singapore
.
22.
Nirenberg
,
L.
,
2018
,
Lectures on Differential Equations and Differential Geometry
,
Higher Education Press
,
Beijing, China
.
23.
Johnson
,
K. L.
,
1985
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
24.
Sandu
,
S.
,
Biboulet
,
N.
,
Nelias
,
D.
, and
Abevi
,
F.
,
2019
, “
Analytical Prediction of the Geometry of Contact Ellipses and Kinematics in a Roller Screw Versus Experimental Results
,”
Mech. Mach. Theory
,
131
, pp.
115
136
.
25.
Yao
,
Q.
,
Wu
,
L. Y.
,
Liu
,
G.
,
Ma
,
S. J.
, and
Tong
,
R. T.
,
2016
, “
Elastic-Plastic Contact Analysis of the Planetary Roller Screw Mechanism
,”
J. Mech. Trans.
,
40
(
11
), pp.
106
110
.
26.
Huang
,
D. Q.
,
Wang
,
Z. H.
, and
Kubo
,
A.
,
2020
, “
Hypoid Gear Integrated Wear Model and Experimental Verification Design and Test
,”
Int. J. Mech. Sci.
,
166
, p.
105228
.
27.
Miao
,
J. C.
,
Li
,
C. Y.
,
Du
,
X.
, and
Chen
,
B. K.
,
2022
, “
Rotate Vector Reducer Design Using Resnet-Based Model and Integration of Discretized Optimization
,”
J. Mech. Sci. Technol.
,
36
(
4
), pp.
1889
1902
.
28.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
29.
Datta
,
D.
, and
Figueira
,
J. R.
,
2011
, “
A Real-Integer-Discrete-Coded Particle Swarm Optimization for Design Problems
,”
Appl. Soft. Comput.
,
11
(
4
), pp.
3625
3633
.
30.
Datta
,
D.
, and
Figueira
,
J. R.
,
2013
, “
A Real-Integer-Discrete-Coded Differential Evolution
,”
Appl. Soft. Comput.
,
13
(
9
), pp.
3884
3893
.
31.
Jazzbin
,
E. A.
,
2020
, “
geatpy: The Genetic and Evolutionary Algorithm Toolbox With High Performance in Python
,” http://geatpy.com/, Accessed July 25, 2023.
32.
Cai
,
W.
,
Liu
,
G.
,
Ma
,
S. J.
,
Zhou
,
Y.
,
Fu
,
X. J.
, and
Zhang
,
J. X.
,
2023
, “
Optimization Research of Planetary Roller Screw Mechanism Parameters Based on Crow Search Algorithm
,”
Chin. J. Eng.
,
45
(
6
), pp.
1013
1022
.
33.
Miao
,
J. C.
,
Du
,
X.
,
Li
,
C. Y.
,
Shan
,
X. P.
, and
Chen
,
B. K.
,
2022
, “
Multi-Scale Modelling of the Thermally Coupled Planetary Roller Screw Mechanism With Curved Fractal Contact
,”
Meccanica
,
57
(
11
), pp.
2771
2795
.
34.
Ma
,
S. J.
,
Xu
,
Q. J.
,
Li
,
C. C.
,
Zhang
,
J. X.
, and
Liu
,
G.
,
2022
,
Wear Modelling of the Thread Pair in a Planetary Roller Screw Mechanism
,
Atlantis Press
,
Dordrecht, Netherlands
, pp.
75
95
.
35.
Miao
,
J. C.
,
Du
,
X.
,
Li
,
C. Y.
,
Shan
,
X. P.
, and
Chen
,
B. K.
,
2022
, “
Lubrication and Wear Analysis of Planetary Roller Screw Mechanism With Threaded Surface Roughness in Thermal Elastohydrodynamic Lubrication
,”
Tribol. Trans.
,
65
(
6
), pp.
1069
1087
.
36.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.
37.
Du
,
X.
,
Chen
,
B. K.
, and
Zheng
,
Z. D.
,
2021
, “
Investigation on Mechanical Behavior of Planetary Roller Screw Mechanism With the Effects of External Loads and Machining Errors
,”
Tribol. Int.
,
154
, p.
106689
.
38.
Lepagneul
,
J.
,
Tadrist
,
L.
,
Sprauel
,
J. M.
, and
Linares
,
J. M.
,
2022
, “
Fatigue Lifespan of a Planetary Roller-Screw Mechanism
,”
Mech. Mach. Theory
,
172
, p.
104769
.
39.
Meng
,
J. J.
,
Du
,
X.
,
Zhao
,
X.
,
Zheng
,
J. W.
,
Wang
,
D. W.
, and
Wan
,
L.
,
2022
, “
Research on Contact and Wear Characteristics of the Planetary Roller Screw Mechanism With Screw Misalignments
,”
Lubricants
,
10
(
6
), p.
115
.
40.
Zhang
,
S.
,
Yan
,
M.
, and
Wang
,
Y.
,
2023
, “
Interaction Between Gear Surface Wear and Contact Fatigue
,”
ASME J. Tribol.
,
145
(
8
), p.
081702
.
41.
Zhou
,
C. G.
,
Wang
,
L. D.
,
Shen
,
J. W.
,
Chen
,
C. H.
,
Ou
,
Y.
, and
Feng
,
H. T.
,
2022
, “
Wear Characterization of Raceway Surface Profiles of Ball Screws
,”
ASME J. Tribol.
,
144
(
11
), p.
111701
.
42.
Yang
,
Z. C.
,
Zhang
,
Y.
,
Zhang
,
K.
, and
Li
,
S. H.
,
2021
, “
Wear Analysis of Angular Contact Ball Bearing in Multiple-Bearing Spindle System Subjected to Uncertain Initial Angular Misalignment
,”
ASME J. Tribol.
,
143
(
9
), p.
091703
.
43.
Li
,
G.
,
Wang
,
Z. H.
, and
Zhu
,
W. D.
,
2019
, “
Prediction of Surface Wear of Involute Gears Based on a Modified Fractal Method
,”
ASME J. Tribol.
,
141
(
3
), p.
031603
.
You do not currently have access to this content.