Abstract

The present research investigates the influence of ZrO2 nanoparticles on the microstructural, mechanical, and tribological behavior of magnesium matrix composites fabricated through an ultrasonic-assisted stir-casting process. The microscopic characterization reveals the successful inclusion of ZrO2 nanoparticles through several characterization methods like energy-dispersive X-ray spectroscopy, scanning electron microscopy, and optical microscopy. The effect of varying ZrO2 content (0.5, 1, 1.5, and 2 wt%) on the tribological behavior is explored using a pin-on-disk wear tester. Wear experiments have been conducted under dry sliding conditions at different operating loads (10, 20, 30, and 40 N) and sliding velocities (0.1, 0.2, 0.3, and 0.4 m/s) at room temperature. The incorporation of ZrO2 nanoparticles improves the microhardness of the cast base alloy and significantly enhances wear resistance. Additionally, an attempt has been made to identify the dominant wear mechanisms by analyzing the worn surfaces.

References

1.
Banerjee
,
S.
,
Sahoo
,
P.
, and
Davim
,
J. P.
,
2021
, “
Tribological Characterisation of Magnesium Matrix Nanocomposites: A Review
,”
Adv. Mech. Eng.
,
13
(
4
), pp.
1
39
.
2.
Luo
,
A. A.
, and
Sachdev
,
A. K.
,
2012
, “Applications of Magnesium Alloys in Automotive Engineering,”
Advances in Wrought Magnesium Alloys
,
C.
Bettles
, and
M.
Barnett
, eds.,
Woodhead Publishing
,
Cambridge
, pp.
393
426
.
3.
Kainer
,
K.U.
,
2003
,
Magnesium – Alloys and Technology
,
Wiley‐VCH Verlag GmbH & Co. KGaA
,
Weinheim
.
4.
Nie
,
K. B.
,
Wang
,
X. J.
,
Deng
,
K. K.
,
Hu
,
X. S.
, and
Wu
,
K.
,
2021
, “
Magnesium Matrix Composite Reinforced by Nanoparticles–A Review
,”
J. Magn. Alloys
,
9
(
1
), pp.
57
77
.
5.
Gupta
,
M.
, and
Wong
,
W. L. E.
,
2015
, “
Magnesium-Based Nanocomposites: Lightweight Materials of the Future
,”
Mater. Charact.
,
105
, pp.
30
46
.
6.
Erman
,
A.
,
Groza
,
J.
,
Li
,
X.
,
Choi
,
H.
, and
Cao
,
G.
,
2012
, “
Nanoparticle Effects in Cast Mg-1 wt% SiC Nano-Composites
,”
Mater. Sci. Eng. A
,
558
, pp.
39
43
.
7.
Kumar
,
T. S.
,
Shalini
,
S.
,
Ramu
,
M.
, and
Govindaraju
,
M.
,
2019
, “
Characterisation of AZ31/ZrO2 Composites Produced Via Stir Casting
,”
Mater. Res. Express
,
6
(
11
), p.
1165d1
.
8.
Shang
,
J.
,
Ke
,
L.
,
Liu
,
F.
,
Lv
,
F.
, and
Xing
,
L.
,
2019
, “
Aging Behavior of Nano SiC Particles Reinforced AZ91D Composite Fabricated Via Friction Stir Processing
,”
J. Alloys Compd.
,
797
, pp.
1240
1248
.
9.
Navazani
,
M.
, and
Dehghani
,
K.
,
2016
, “
Fabrication of Mg-ZrO2 Surface Layer Composites by Friction Stir Processing
,”
J. Mater. Process. Technol.
,
229
, pp.
439
449
.
10.
Lan
,
J.
,
Yang
,
Y.
, and
Li
,
X.
,
2004
, “
Microstructure and Microhardness of SiC Nanoparticles Reinforced Magnesium Composites Fabricated by Ultrasonic Method
,”
Mater. Sci. Eng. A
,
386
(
1–2
), pp.
284
290
.
11.
Nie
,
K. B.
,
Wang
,
X. J.
,
Hu
,
X. S.
,
Xu
,
L.
,
Wu
,
K.
, and
Zheng
,
M. Y.
,
2011
, “
Microstructure and Mechanical Properties of SiC Nanoparticles Reinforced Magnesium Matrix Composites Fabricated by Ultrasonic Vibration
,”
Mater. Sci. Eng. A
,
528
(
15
), pp.
5278
5282
.
12.
Nie
,
K. B.
,
Wang
,
X. J.
,
Wu
,
K.
,
Xu
,
L.
,
Zheng
,
M. Y.
, and
Hu
,
X. S.
,
2011
, “
Processing, Microstructure and Mechanical Properties of Magnesium Matrix Nanocomposites Fabricated by Semisolid Stirring Assisted Ultrasonic Vibration
,”
J. Alloys Compd.
,
509
(
35
), pp.
8664
8669
.
13.
Tjong
,
S. C.
, and
Ma
,
Z. Y.
,
2000
, “
Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites
,”
Mater. Sci. Eng.: R: Rep.
,
29
(
3–4
), pp.
49
113
.
14.
Tsukamoto
,
H.
,
2021
, “
Enhanced Mechanical Properties of Carbon Nanotube-Reinforced Magnesium Composites With Zirconia Fabricated by Spark Plasma Sintering
,”
J. Compos. Mater.
,
55
(
18
), pp.
2503
2512
.
15.
Li
,
X.
,
Ma
,
G.
,
Jin
,
P.
,
Zhao
,
L.
,
Wang
,
J.
, and
Li
,
S.
,
2019
, “
Microstructure and Mechanical Properties of the Ultra-Fine Grained ZK60 Reinforced With Low Content of Nano-Diamond by Powder Metallurgy
,”
J. Alloys Compd.
,
778
, pp.
309
317
.
16.
Prasad
,
S. S.
,
Prasad
,
S. B.
,
Verma
,
K.
,
Mishra
,
R. K.
,
Kumar
,
V.
, and
Singh
,
S.
,
2022
, “
The Role and Significance of Magnesium in Modern Day Research-A Review
,”
J. Magn. Alloys
,
10
(
1
), pp.
1
61
.
17.
Titarmare
,
V. P.
,
Banerjee
,
S.
, and
Sahoo
,
P.
,
2023
, “
Dry Sliding Tribological Behavior of Ultrasonic Stir Cast AZ31-B4C Composites
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
237
(
4
), pp.
824
842
.
18.
Shen
,
M. J.
,
Ying
,
W. F.
,
Wang
,
X. J.
,
Zhang
,
M. F.
, and
Wu
,
K.
,
2015
, “
Development of High Performance Magnesium Matrix Nanocomposites Using Nano-SiC Particulates as Reinforcement
,”
J. Mater. Eng. Perform.
,
24
(
10
), pp.
3798
3807
.
19.
Banerjee
,
S.
,
Poria
,
S.
,
Sutradhar
,
G.
, and
Sahoo
,
P.
,
2019
, “
Dry Sliding Tribological Behavior of AZ31-WC Nano-Composites
,”
J. Magn. Alloys
,
7
(
2
), pp.
315
327
.
20.
Nie
,
K.
,
Guo
,
Y.
,
Deng
,
K.
, and
Kang
,
X.
,
2019
, “
High Strength TiCp/Mg-Zn-Ca Magnesium Matrix Nanocomposites With Improved Formability at Low Temperature
,”
J. Alloys Compd.
,
792
, pp.
267
278
.
21.
Wang
,
X. J.
,
Wang
,
N. Z.
,
Wang
,
L. Y.
,
Hu
,
X. S.
,
Wu
,
K.
,
Wang
,
Y. Q.
, and
Huang
,
Y. D.
,
2014
, “
Processing, Microstructure and Mechanical Properties of Micro-SiC Particles Reinforced Magnesium Matrix Composites Fabricated by Stir Casting Assisted by Ultrasonic Treatment Processing
,”
Mater. Des.
,
57
, pp.
638
645
.
22.
Guo
,
Y. C.
,
Nie
,
K. B.
,
Kang
,
X. K.
,
Deng
,
K. K.
,
Han
,
J. G.
, and
Zhu
,
Z. H.
,
2019
, “
Achieving High-Strength Magnesium Matrix Nanocomposite Through Synergistical Effect of External Hybrid (SiC + TiC) Nanoparticles and Dynamic Precipitated Phase
,”
J. Alloys Compd.
,
771
, pp.
847
856
.
23.
Khandelwal
,
A.
,
Mani
,
K.
,
Srivastava
,
N.
,
Gupta
,
R.
, and
Chaudhari
,
G. P.
,
2017
, “
Mechanical Behavior of AZ31/Al2O3 Magnesium Alloy Nanocomposites Prepared Using Ultrasound Assisted Stir Casting
,”
Compos. Part B: Eng.
,
123
, pp.
64
73
.
24.
Nie
,
K. B.
,
Han
,
J. G.
,
Deng
,
K. K.
, and
Zhu
,
Z. H.
,
2020
, “
Simultaneous Improvements in Tensile Strength and Elongation of a Mg-2Zn-0.8 Sr-0.2 Ca Alloy by a Combination of Microalloying and Low Content of TiC Nanoparticles
,”
Mater. Lett.
,
260
, p.
126951
.
25.
Sımsek
,
D.
, and
Ozyurek
,
D.
,
2020
, “
The Wear Performance at High Temperatures of ZrO2-Reinforced Aluminum Matrix Composites Produced by Mechanochemical Reaction Method
,”
ASME J. Tribol.
,
142
(
10
), p.
101701
.
26.
Simsek
,
D.
,
2022
, “
Effect on Wear Performance of ZrO2 Amount of 316L Stainless Steel Matrix Composites Produced by a Mechanical Alloying Method
,”
ASME J. Tribol.
,
144
(
10
), p.
101708
.
27.
Qiao
,
K.
,
Zhang
,
T.
,
Wang
,
K.
,
Yuan
,
S.
,
Zhang
,
S.
,
Wang
,
L.
,
Wang
,
Z.
, et al
,
2021
, “
Mg/ZrO2 Metal Matrix Nanocomposites Fabricated by Friction Stir Processing: Microstructure, Mechanical Properties, and Corrosion Behavior
,”
Front. Bioeng. Biotechnol.
,
9
, p.
605171
.
28.
Basha
,
K. K.
,
Subramanian
,
R.
,
Kumar
,
T. S.
, and
Priyadharshini
,
G. S.
,
2023
, “
Dry Sliding Wear Behaviour of AZ31/ZrO2 Composites Produced Using a Stir Casting Process
,”
Mater. Technol.
,
57
(
3
), pp.
257
265
.
29.
Mazaheri
,
Y.
,
Jalilvand
,
M. M.
,
Heidarpour
,
A.
, and
Jahani
,
A. R.
,
2020
, “
Tribological Behavior of AZ31/ZrO2 Surface Nanocomposites Developed by Friction Stir Processing
,”
Tribol. Int.
,
143
, p.
106062
.
30.
Vaira Vignesh
,
R.
,
Padmanaban
,
R.
,
Govindaraju
,
M.
, and
Suganya Priyadharshini
,
G.
,
2019
, “
Investigations on the Corrosion Behaviour and Biocompatibility of Magnesium Alloy Surface Composites AZ91D-ZrO2 Fabricated by Friction Stir Processing
,”
Trans. IMF
,
97
(
5
), pp.
261
270
.
31.
Tuan
,
W. H.
,
Chen
,
R. Z.
,
Wang
,
T. C.
,
Cheng
,
C. H.
, and
Kuo
,
P. S.
,
2002
, “
Mechanical Properties of Al2O3/ZrO2 Composites
,”
J. Eur. Ceram. Soc.
,
22
(
16
), pp.
2827
2833
.
32.
Sathyaseelan
,
B.
,
Manikandan
,
E.
,
Baskaran
,
I.
,
Senthilnathan
,
K.
,
Sivakumar
,
K.
,
Moodley
,
M. K.
,
Ladchumananandasivam
,
R.
, and
Maaza
,
M.
,
2017
, “
Studies on Structural and Optical Properties of ZrO2 Nanopowder for Opto-Electronic Applications
,”
J. Alloys Compd.
,
694
, pp.
556
559
.
33.
Pasha
,
M. B.
,
Narasimha Rao
,
R.
,
Ismail
,
S.
,
Tekumalla
,
S.
, and
Gupta
,
M.
,
2022
, “
Tribological Behavior of Mg/Fe3O4 Recycled Nanocomposites Processed Through Turning Induced Deformation Technique
,”
ASME J. Tribol.
,
144
(
12
), p.
121702
.
34.
Ravichandran
,
M.
, and
Ganesh Babu
,
L.
,
2019
, “
Mechanical and Tribological Characteristics of ZrO2 Reinforced Al2014 Matrix Composites Produced Via Stir Casting Route
,”
Mater. Res. Express
,
6
(
2019
), p.
115542
.
35.
Jäger
,
A.
,
Lukáč
,
P.
,
Gärtnerová
,
V.
,
Haloda
,
J.
, and
Dopita
,
M.
,
2006
, “
Influence of Annealing on the Microstructure of Commercial Mg Alloy AZ31 After Mechanical Forming
,”
Mater. Sci. Eng. A
,
432
(
1–2
), pp.
20
25
.
36.
Suslick
,
K. S.
, and
Price
,
G. J.
,
1999
, “
Applications of Ultrasound to Materials Chemistry
,”
Annu. Rev. Mater. Sci.
,
29
(
1
), pp.
295
326
.
37.
Ramirez
,
A.
,
Qian
,
M.
,
Davis
,
B.
,
Wilks
,
T.
, and
St John
,
D. H.
,
2008
, “
Potency of High-Intensity Ultrasonic Treatment for Grain Refinement of Magnesium Alloys
,”
Scr. Mater.
,
59
(
1
), pp.
19
22
.
38.
Eskin
,
G. I.
,
1998
,
Ultrasonic Treatment of Light Alloy Melts
,
CRC Press
.
39.
Avedesian
,
M.
and
Baker
,
H.
, ed.,
1999
, “
ASM Specialty Handbook: Magnesium and Magnesium Alloys
,” Vol.
274
,
ASM International
,
Materials Park, OH
.
40.
Sunil
,
B. R.
,
Ganesh
,
K. V.
,
Pavan
,
P.
,
Vadapalli
,
G.
,
Swarnalatha
,
C.
,
Swapna
,
P.
,
Bindukumar
,
P.
, and
Reddy
,
G. P. K.
,
2016
, “
Effect of Aluminum Content on Machining Characteristics of AZ31 and AZ91 Magnesium Alloys During Drilling
,”
J. Magn. Alloys
,
4
(
1
), pp.
15
21
.
41.
Rauta
,
P. R.
,
Manivasakan
,
P.
,
Rajendran
,
V.
,
Sahu
,
B. B.
,
Panda
,
B. K.
, and
Mohapatra
,
P. J. P. T.
,
2012
, “
Phase Transformation of ZrO2 Nanoparticles Produced From Zircon
,”
Phase Trans.
,
85
(
1–2
), pp.
13
26
.
42.
Aydın
,
F.
,
2023
, “
Tribological Aspects of Magnesium Matrix Composites: A Review of Recent Experimental Studies
,”
Tribol. Mater., Surf. Interfaces
,
17
(
4
), pp.
363
396
.
43.
Labib
,
F.
,
Ghasemi
,
H. M.
, and
Mahmudi
,
R.
,
2016
, “
Dry Tribological Behavior of Mg/SiCp Composites at Room and Elevated Temperatures
,”
Wear
,
348
, pp.
69
79
.
44.
Taltavull
,
C.
,
Rodrigo
,
P.
,
Torres
,
B.
,
Lopez
,
A. J.
, and
Rams
,
J.
,
2014
, “
Dry Sliding Wear Behavior of AM50B Magnesium Alloy
,”
Mater. Des.
,
56
, pp.
549
556
.
45.
Habibnejad-Korayem
,
M.
,
Mahmudi
,
R.
,
Ghasemi
,
H. M.
, and
Poole
,
W. J.
,
2010
, “
Tribological Behavior of Pure Mg and AZ31 Magnesium Alloy Strengthened by Al2O3 Nano-Particles
,”
Wear
,
268
(
3–4
), pp.
405
412
.
46.
Nguyen
,
Q. B.
,
Sim
,
Y. H. M.
,
Gupta
,
M.
, and
Lim
,
C. Y. H.
,
2015
, “
Tribology Characteristics of Magnesium Alloy AZ31B and Its Composites
,”
Tribol. Int.
,
82
, pp.
464
471
.
47.
Liu
,
S.
,
Paidar
,
M.
,
Ojo
,
O. O.
,
Poková
,
M. Š.
,
Mehrez
,
S.
,
Zain
,
A. M.
,
Zhao
,
Q.
, and
Wang
,
J.
,
2023
, “
Friction Stir Processing of Hybridized AZ31B Magnesium Alloy-Based Composites by Adding CeO2 and ZrO2 Powders: Mechanical, Wear, and Corrosion Behaviors
,”
J. Mater. Res. Technol.
,
24
, pp.
1949
1972
.
48.
Kennedy Jr
,
F. E.
,
1984
, “
Thermal and Thermomechanical Effects in Dry Sliding
,”
Wear
,
100
(
1–3
), pp.
453
476
.
49.
Bhushan
,
B.
, and
Ko
,
P. L.
,
2003
, “
Introduction to Tribology
,”
ASME Appl. Mech. Rev.
,
56
(
1
), pp.
B6
B7
.
You do not currently have access to this content.