Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Bearings often experience small and medium raceway damage due to operating and loading conditions, which induces abnormal dynamic behavior. The rotor-bearing system is tested at various conditions, and the influence of each fault has been presented in this study. The fundamental bearing characteristics frequencies and statistical features withdrawn from a vibration response are utilized for fault identification using a machine learning algorithm. Extreme learning machine (ELM) and the supervised machine learning method K-nearest neighbor (KNN) network were utilized to classify vibration data collected experimentally under various operating conditions. Bearing characteristics frequencies and statistical features are applied to both proposed approaches and compared regarding their prediction quality. The result shows that the ELM has better performance over the KNN in precision of fault recognition up to 99% and thus feels promising for condition monitoring of industrial rotating machines. This work provides valuable insights for operation, maintenance, and early fault warning related to bearings.

References

1.
Wang
,
J.
,
Lu
,
S.
,
Wang
,
S.-H.
, and
Zhang
,
Y.-D.
,
2021
, “
A Review on Extreme Learning Machine
,”
Multimedia Tools Appl.
,
81
(
29
), pp.
41611
41660
.
2.
Mao
,
W.
,
He
,
J.
,
Li
,
Y.
, and
Yan
,
Y.
,
2016
, “
Bearing Fault Diagnosis With Auto-encoder Extreme Learning Machine: A Comparative Study
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
231
(
8
), pp.
1560
1578
.
3.
Chen
,
Y.
,
Kloft
,
M.
,
Yang
,
Y.
,
Li
,
C.
, and
Li
,
L.
,
2018
, “
Mixed Kernel Based Extreme Learning Machine for Electric Load Forecasting
,”
Neurocomputing
,
312
(
1
), pp.
90
106
.
4.
Liang
,
M.
,
Su
,
D.
,
Hu
,
D.
, and
Ge
,
M.
,
2018
, “
A Novel Faults Diagnosis Method for Rolling Element Bearings Based on ELCD and Extreme Learning Machine
,”
Shock Vib.
,
2018
(
1
), pp.
1
10
.
5.
Li
,
Y.
,
Wang
,
X.
, and
Wu
,
J.
,
2016
, “
Fault Diagnosis of Rolling Bearing Based on Permutation Entropy and Extreme Learning Machine
,”
Chinese Control and Decision Conference (CCDC)
,
Yinchuan, China
, pp.
2966
2971
.
6.
Wang
,
Z.
,
Song
,
J.
,
Li
,
X.
, and
Yu
,
Q.
,
2022
, “
Modeling and Dynamic Analysis of Cylindrical Roller Bearings Under Combined Radial and Axial Loads
,”
ASME J. Tribol.
,
144
(
12
), p.
121203
.
7.
Nistane
,
V.
, and
Harsha
,
S.
,
2018
, “
Prognosis of Degradation Progress of Ball Bearings Using Supervised Machine Learning
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
232
(
2
), pp.
183
198
.
8.
Cui
,
B.
,
Weng
,
Y.
, and
Zhang
,
N.
,
2022
, “
A Feature Extraction and Machine Learning Framework for Bearing Fault Diagnosis
,”
Renew. Energy
,
191
(
1
), pp.
987
997
.
9.
Ayati
,
M.
,
Shirazi
,
F. A.
,
Ansari-Rad
,
S.
, and
Zabihihesari
,
A.
,
2020
, “
Classification-Based Fuel Injection Fault Detection of a Trainset Diesel Engine Using Vibration Signature Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
142
(
5
), p.
051003
.
10.
Dong
,
S.
,
Xu
,
X.
, and
Chen
,
R.
,
2015
, “
Application of Fuzzy C-Means Method and Classification Model of Optimized K-Nearest Neighbor for Fault Diagnosis of Bearing
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
8
), pp.
2255
2263
.
11.
Aydemir
,
G.
,
2018
, “
Deep Learning Based Spectrum Compression Algorithm for Rotating Machinery Condition Monitoring
,”
Proceedings of the ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. Volume 1: Development and Characterization of Multifunctional Materials; Modeling, Simulation, and Control of Adaptive Systems; Integrated System Design and Implementation
,
San Antonio, TX
,
Sept. 10–12
, p.
V001T03A027
,
ASME
.
12.
Manikandan
,
S.
, and
Duraivelu
,
K.
,
2020
, “
Fault Diagnosis of Various Rotating Equipment Using Machine Learning Approaches—A Review
,”
Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng.
,
235
(
2
), pp.
629
642
.
13.
Rathore
,
M. S.
, and
Harsha
,
S. P.
,
2021
, “
Prognostic Analysis of High-Speed Cylindrical Roller Bearing Using Weibull Distribution and K-Nearest Neighbor
,”
ASME J. Nondestr. Eval. Diagn. Prognostics Eng. Syst.
,
5
(
1
), p.
011005
.
14.
Wang
,
Q.
,
Wang
,
S.
,
Wei
,
B.
,
Chen
,
W.
, and
Zhang
,
Y.
,
2021
, “
Weighted K-NN Classification Method of Bearings Fault Diagnosis With Multi-dimensional Sensitive Features
,”
IEEE Access
,
9
(
1
), pp.
45428
45440
.
15.
Shinde
,
P. V.
, and
Desavale
,
R. G.
,
2022
, “
Application of Dimension Analysis and Soft Competitive Tool to Predict Compound Faults Present in Rotor-Bearing Systems
,”
Measurement
,
193
, p.
110984
.
16.
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Sawant
,
S. H.
,
2023
, “
A Multi Fault Classification in a Rotor-Bearing System Using Machine Learning Approach
,”
J. Braz. Soc. Mech. Sci. Eng.
,
45
(
2
), p.
121
.
17.
Patil
,
S. M.
,
Desavale
,
R. G.
,
Shinde
,
P. V.
, and
Patil
,
V. R.
,
2020
, “Comparative Study of Response of Vibrations for Circular and Square Defects on Components of Cylindrical Roller Bearing Under Different Conditions,”
Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering
,
N.
Gascoin
and
E.
Balasubramanian
, eds.,
Springer
,
Oxford, UK
, pp.
189
198
.
18.
Jadhav
,
P. S.
,
Salunkhe
,
V. G.
,
Desavale
,
R. G.
,
Khot
,
S. M.
,
Shinde
,
P. V.
,
Jadhav
,
P. M.
, and
Gadyanavar
,
P. R.
,
2024
, “
Identification and Fault Diagnosis of Rolling Element Bearings Using Dimension Theory and Machine Learning Techniques
,”
ASME J. Tribol.
,
146
(
9
), p.
094301
.
19.
Kanai
,
R. A.
,
Desavale
,
R. G.
, and
Chavan
,
S. P.
,
2016
, “
Experimental-Based Fault Diagnosis of Rolling Bearings Using Artificial Neural Network
,”
ASME J. Tribol.
,
138
(
3
), p.
031103
.
20.
Liu
,
T.
,
Li
,
G.
,
Wei
,
H.
, and
Xing
,
P.
,
2017
, “
Stability Analysis of Tribosystem Based on the Energy Feature of Friction Vibration
,”
ASME J. Tribol.
,
139
(
5
)
, p.
051604
.
21.
Li
,
C.
,
Qin
,
Y.
,
Wang
,
Y.
, and
Chen
,
H.
,
2020
, “
Vibration Analysis of Deep Groove Ball Bearings With Local Defect Using a New Displacement Excitation Function
,”
ASME J. Tribol.
,
142
(
12
), p.
121202
.
22.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G.
,
Jiang
,
Y.
, and
Wei
,
C.
,
2018
, “
Dynamic States Recognition of Friction Noise in the Wear Process Based on Moving Cut Data-Approximate Entropy
,”
ASME J. Tribol.
,
140
(
5
), p.
051604
.
23.
Zhang
,
K.
,
Wang
,
J.
,
Shi
,
H.
,
Zhang
,
X.
, and
Tang
,
Y.
,
2021
, “
A Fault Diagnosis Method Based on Improved Convolutional Neural Network for Bearings Under Variable Working Conditions
,”
Measurement
,
182
(
1
), p.
109749
.
24.
Peng
,
D.
,
Desmet
,
W.
, and
Gryllias
,
K.
,
2024
, “
GLDAN: Global and Local Domain Adaptation Network for Cross-Wind Turbine Fault Diagnosis
,”
ASME J. Eng. Gas Turbines Power
,
146
(
3
), p.
031009
.
25.
Buchaiah
,
S.
, and
Shakya
,
P.
,
2022
, “
Bearing Fault Diagnosis and Prognosis Using Data Fusion Based Feature Extraction and Feature Selection
,”
Measurement
,
188
(
1
), p.
110506
.
26.
Rauber
,
T. W.
,
da Silva Loca
,
A. L.
,
de Assis Boldt
,
F.
,
Rodrigues
,
A. L.
, and
Varejão
,
F. M.
,
2021
, “
An Experimental Methodology to Evaluate Machine Learning Methods for Fault Diagnosis Based on Vibration Signals
,”
Expert Syst. Appl.
,
167
(
1
), p.
114022
.
27.
Jiang
,
P.
,
Xia
,
J.
,
Li
,
W.
,
Xu
,
C.
, and
Sun
,
W.
,
2025
, “
Innovative Bearing Fault Diagnosis Method: Combining Swin Transformer Deep Learning and Acoustic Emission Technology
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
11
(
1
), p.
011102
.
28.
Liang
,
J.
,
Wang
,
L.
,
Yu
,
G.
,
Wu
,
J.
,
Wang
,
D.
, and
Lin
,
S.
,
2024
, “
Indirect Prediction of Spindle Rotation Error Through Vibration Signal Based on Supervised Local Mean Decomposition Filter Fusion and Bi-LSTM Classification Network
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
10
(
2
), p.
021102
.
29.
Zhang
,
T.
,
Liu
,
S.
,
Wei
,
Y.
, and
Zhang
,
H.
,
2021
, “
A Novel Feature Adaptive Extraction Method Based on Deep Learning for Bearing Fault Diagnosis
,”
Measurement
,
185
(
1
), p.
110030
.
30.
Huang
,
M.
,
Yin
,
J.
,
Yan
,
S.
, and
Xue
,
P.
,
2023
, “
A Fault Diagnosis Method of Bearings Based on Deep Transfer Learning
,”
Simul. Model. Pract. Theory
,
122
(
1
), p.
102659
.
31.
Zhao
,
Q.
,
Ding
,
Y.
,
Lu
,
C.
,
Wang
,
C.
,
Ma
,
L.
,
Tao
,
L.
, and
Ma
,
J.
,
2023
, “
An Adaptive Fault Diagnosis Framework Under Class-Imbalanced Conditions Based on Contrastive Augmented Deep Reinforcement Learning
,”
Expert Syst. Appl.
,
234
, p.
121001
.
32.
Patil
,
A. P.
, and
Deka
,
P. C.
,
2016
, “
An Extreme Learning Machine Approach for Modeling Evapotranspiration Using Extrinsic Inputs
,”
Comput. Electron. Agric.
,
121
(
1
), pp.
385
392
.
33.
Vishwendra
,
M. A.
,
Salunkhe
,
P. S.
,
Patil
,
S. V.
,
Shinde
,
S. A.
,
Shinde
,
P. V.
,
Desavale
,
R. G.
,
Jadhav
,
P. M.
, and
Dharwadkar
,
N. V.
,
2022
, “
A Novel Method to Classify Rolling Element Bearing Faults Using K-Nearest Neighbor Machine Learning Algorithm
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst. Part B: Mech. Eng.
,
8
(
3
), p.
031202
.
34.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
1
), pp.
1876
1886
. doi.org/10.1016/j.eswa.2010.07.119
35.
Kumar
,
H.
, and
Upadhyaya
,
G.
,
2023
, “
Fault Diagnosis of Rolling Element Bearing Using Continuous Wavelet Transform and K-Nearest Neighbour
,”
Mater. Today: Proc.
,
92
(
1
), pp.
56
60
.
36.
Li
,
X.
,
Li
,
J.
,
Zhao
,
C.
,
Qu
,
Y.
, and
He
,
D.
,
2019
, “
Early Gear Pitting Fault Diagnosis Based on Bi-directional LSTM
,”
2019 Prognostics and System Health Management Conference (PHM-Qingdao)
,
Qingdao, China
,
Oct. 25–27
, IEEE, pp.
1
5
.
37.
Li
,
Z.
,
Li
,
Z.
, and
Fengshou
,
G.
,
2024
, “
Intelligent Diagnosis Method for Machine Faults Based on Federated Transfer Learning
,”
Appl. Soft Comput.
,
163
(
1
), pp.
111922
111922
.
38.
Fu
,
X.
,
Tao
,
J.
,
Jiao
,
K.
, and
Liu
,
C.
,
2024
, “
A Novel Semi-supervised Prototype Network With Two-Stream Wavelet Scattering Convolutional Encoder for TBM Main Bearing Few-Shot Fault Diagnosis
,”
Knowl. Based Syst.
,
286
, pp.
111408
111408
.
39.
Salunkhe
,
V. G.
,
Desavale
,
R. G.
,
Khot
,
S. M.
, and
Yelve
,
N. P.
,
2024
, “
Identification of Bearing Clearance in Sugar Centrifuge Using Dimension Theory and Support Vector Machine on Vibration Measurement
,”
ASME J. Nondestr. Eval. Diagn. Prognostics Eng. Syst.
,
7
(
2
), p.
021003
.
40.
Salunkhe
,
V. G.
,
Khot
,
S. M.
,
Desavale
,
R. G.
, and
Yelve
,
N. P.
,
2023
, “
Unbalance Bearing Fault Identification Using Highly Accurate Hilbert–Huang Transform Approach
,”
ASME J. Nondestr. Eval. Diagn. Prognostics Eng. Syst.
,
6
(
3
), p.
031005
.
41.
Salunkhe
,
V. G.
,
Khot
,
S. M.
,
Desavale
,
R. G.
,
Yelve
,
N. P.
, and
Jadhav
,
P. S.
,
2024
, “
An Integrated Dimension Theory and Modulation Signal Bispectrum Technique for Analyzing Bearing Fault in Industrial Fibrizer
,”
ASME J. Nondestr. Eval. Diagn. Prognostics Eng. Syst.
,
7
(
3
), p.
031006
.
You do not currently have access to this content.