Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The current work elucidates the tribological behavior of thermally sprayed AlCoCrFeNiTi high entropy alloy coatings under various temperatures of 200 °C, 400 °C, and 600 °C. Typically, most metallic alloys demonstrate softening and an increased wear-rate when exposed to extreme temperatures under loaded weight. The atmospheric plasma sprayed high entropy alloy coating exhibited minimal wear mass loss at high temperatures. The data analysis reveals the development of a tribolayer that facilitates a reduced mass loss of 15.34% in the alloy at 600 °C. The examination of the wear scars under field emission scanning electron microscopy analysis reveals the presence of an adhesive layer, wear debris, craters, and scratches. The existence of different types of oxides on the abraded surfaces was confirmed by the results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The results support the effectiveness of AlCoCrFeNiTi alloy coatings in enhancing wear resistance under extreme conditions.

References

1.
Singh
,
S.
,
Katiyar
,
N. K.
,
Goel
,
S.
, and
Joshi
,
S. N.
,
2023
, “
Phase Prediction and Experimental Realisation of a New High Entropy Alloy Using Machine Learning
,”
Sci. Rep.
,
13
(
1
), p.
4811
.
2.
Fan
,
P.
,
Katiyar
,
N. K.
,
Arshad
,
M.
,
Bai
,
M.
,
Mao
,
H.
, and
Goel
,
S.
,
2024
, “
Anisotropic Plasticity Mechanisms in a Newly Synthesised High Entropy Alloy Investigated Using Atomic Simulations and Nanoindentation Experiments
,”
J. Alloys Compd.
,
970
, p.
172541
.
3.
Kumar
,
H.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2024
, “
High Temperature Tribological Behavior of Atmospheric Plasma-Sprayed CoCrFeNiW0.3 + 5 At% C High-Entropy Alloy Coating
,”
J. Mater. Sci.
,
59
(
9
), pp.
3904
3918
.
4.
Ou
,
W.
,
Yuan
,
X.
,
Li
,
Z.
,
Zuo
,
X.
,
Li
,
X.
,
Zhang
,
L.
, and
Li
,
T.
,
2023
, “
Novel Eutectic High-Entropy Alloy Surfacing of Flower-Pot Structure With Outstanding Wear Resistance Manufactured by Laser Cladding
,”
Surf. Interfaces
,
40
, p.
103068
.
5.
Katiyar
,
N. K.
,
Goel
,
G.
, and
Goel
,
S.
,
2021
, “
Emergence of Machine Learning in the Development of High Entropy Alloy and Their Prospects in Advanced Engineering Applications
,”
Emergent Mater.
,
4
(
6
), pp.
1635
1648
.
6.
Kumar
,
H.
,
Kumar
,
C.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2022
, “Laser Re-melting of Atmospheric Plasma Sprayed High Entropy Alloy,”
Advanced Engineering of Materials Through Lasers
,
J.
Radha Krishan
and
Sunil Pathak
, eds.,
Springer
,
Cham, Switzerland
, pp.
105
127
.
7.
Kumar
,
H.
,
Bhaduri
,
G. A.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2022
, “
Microstructural Characterization and Tribological Properties of Atmospheric Plasma Sprayed High Entropy Alloy Coatings
,”
J. Therm. Spray Technol.
,
31
(
6
), pp.
1956
1974
.
8.
Zhang
,
Q.
,
Han
,
B.
,
Li
,
M.
,
Chen
,
Z.
,
Hu
,
C.
, and
Jia
,
C.
,
2023
, “
Comparison of CoCrFeNi Coatings Prepared Via High-Speed Laser Cladding and Normal Laser Cladding on Microstructure and Properties
,”
Intermetallics
,
153
, p.
107795
.
9.
Cheng
,
J. C.
,
Qin
,
H. L.
,
Li
,
C.
,
Zhao
,
F.
,
Pan
,
R. C.
,
Wang
,
Q. Y.
,
Bian
,
Y. L.
, and
Luo
,
S. N.
,
2023
, “
Deformation and Damage of Equiatomic CoCrFeNi High-Entropy Alloy Under Plate Impact Loading
,”
Mater. Sci. Eng. A
,
862
, p.
144432
.
10.
Fan
,
N.
,
Rafferty
,
A.
,
Lupoi
,
R.
,
Li
,
W.
,
Xie
,
Y.
, and
Yin
,
S.
,
2023
, “
Microstructure Evolution and Mechanical Behavior of Additively Manufactured CoCrFeNi High-Entropy Alloy Fabricated Via Cold Spraying and Post-Annealing
,”
Mater. Sci. Eng. A
,
873
, p.
144748
.
11.
Li
,
W.-J.
,
An
,
J.-H.
,
Zhang
,
L.
,
Tu
,
J.
,
Wang
,
L.-Z.
,
Zheng
,
S.-K.
, and
Zhou
,
Z.-M.
,
2023
, “
Microstructure, Mechanical and Tribological Properties of CoCrFeNi High-Entropy Alloy Fabricated by Different Preparing Processes
,”
Mater. Lett.
,
335
, p.
133760
.
12.
Supekar
,
R.
,
Nair
,
R. B.
,
McDonald
,
A.
, and
Stoyanov
,
P.
,
2023
, “
Sliding Wear Behavior of High Entropy Alloy Coatings Deposited Through Cold Spraying and Flame Spraying: A Comparative Assessment
,”
Wear
,
516–517
, p.
204596
.
13.
Xu
,
Z.
,
Li
,
Q. Y.
,
Li
,
W.
, and
Li
,
D. Y.
,
2023
, “
Microstructure, Mechanical Properties, and Wear Behavior of AlCoCrFeNi High-Entropy Alloy and AlCrFeNi Medium-Entropy Alloy With WC Addition
,”
Wear
,
522
, p.
204701
.
14.
González
,
S.
,
Sfikas
,
A. K.
,
Kamnis
,
S.
,
Garay-Reyes
,
C. G.
,
Hurtado-Macias
,
A.
, and
Martínez-Sánchez
,
R.
,
2023
, “
Wear Resistant CoCrFeMnNi0.8 V High Entropy Alloy With Multi Length-Scale Hierarchical Microstructure
,”
Mater. Lett.
,
331
, p.
133504
.
15.
Kumar
,
H.
,
Bhaduri
,
G. A.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2022
, “
Influence of Annealing on Microstructure and Tribological Properties of AlCoCrFeNiTi High Entropy Alloy Based Coating
,”
Met. Mater. Int.
,
29
(
3
), pp.
645
658.
16.
Ghadami
,
F.
,
Ghadami
,
S.
, and
Davoudabadi
,
M. A.
,
2022
, “
Sliding Wear Behavior of the Nanoceria-Doped AlCrFeCoNi High-Entropy Alloy Coatings Deposited by Air Plasma Spraying Technique
,”
J. Therm. Spray Technol.
,
31
(
4
), pp.
1263
1275
.
17.
Li
,
X.
,
Wang
,
Y.
,
Wang
,
F.
, and
Liang
,
A.
,
2023
, “
Subsonic-Flame-Sprayed CoCrFeNi, AlCoCrFeNi and MnCoCrFeNi-Based High-Entropy Alloy Coatings and Their Tribological Behaviors
,”
J. Therm. Spray Technol.
,
32
(
1
), pp.
96
110
.
18.
Cho
,
F.-Y.
,
Tung
,
S.-W.
, and
Ouyang
,
F.-Y.
,
2022
, “
High Temperature Oxidation Behavior of High Entropy Alloy Al4Co3Cr25Cu10Fe25Ni33 in Oxygen-Containing Atmospheres
,”
Mater. Chem. Phys.
,
278
, p.
125678
.
19.
Sun
,
Z.
,
Zhang
,
X.
,
Li
,
X.
,
Xu
,
Z.
,
Li
,
C.
, and
Wang
,
Z.
,
2022
, “
Study on the Wear Behavior of CoCrFeNiAl1.0 High Entropy Alloy at High Temperature
,”
Mater. Lett.
,
324
, p.
132726
.
20.
Huang
,
L.
,
Sun
,
Y.
,
Amar
,
A.
,
Wu
,
C.
,
Liu
,
X.
,
Le
,
G.
,
Wang
,
X.
, et al
,
2021
, “
Microstructure Evolution and Mechanical Properties of Al CoCrFeNi High-Entropy Alloys by Laser Melting Deposition
,”
Vacuum
,
183
, p.
109875
.
21.
Kao
,
Y.-F.
,
Chen
,
T.-J.
,
Chen
,
S.-K.
, and
Yeh
,
J.-W.
,
2009
, “
Microstructure and Mechanical Property of As-Cast, -Homogenized, and -Deformed AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys
,”
J. Alloys Compd.
,
488
(
1
), pp.
57
64
.
22.
Cui
,
Y.
,
Shen
,
J.
,
Manladan
,
S. M.
,
Geng
,
K.
, and
Hu
,
S.
,
2020
, “
Wear Resistance of FeCoCrNiMnAlx High-Entropy Alloy Coatings at High Temperature
,”
Appl. Surf. Sci.
,
512
, p.
145736
.
23.
Verma
,
A.
,
Tarate
,
P.
,
Abhyankar
,
A. C.
,
Mohape
,
M. R.
,
Gowtam
,
D. S.
,
Deshmukh
,
V. P.
, and
Shanmugasundaram
,
T.
,
2019
, “
High Temperature Wear in CoCrFeNiCux High Entropy Alloys: The Role of Cu
,”
Scr. Mater.
,
161
, pp.
28
31
.
24.
Liu
,
H.
,
Liu
,
J.
,
Chen
,
P.
, and
Yang
,
H.
,
2019
, “
Microstructure and High Temperature Wear Behavior of In-Situ TiC Reinforced AlCoCrFeNi-Based High-Entropy Alloy Composite Coatings Fabricated by Laser Cladding
,”
Opt. Laser Technol.
,
118
, pp.
140
150
.
25.
Löbel
,
M.
,
Lindner
,
T.
, and
Lampke
,
T.
,
2020
, “
High-Temperature Wear Behavior of AlCoCrFeNiTi0.5 Coatings Produced by HVOF
,”
Surf. Coat. Technol.
,
403
, p.
126379
.
26.
Zhicheng
,
L.
, and
Dejun
,
K.
,
2023
, “
Effects of TiC Mass Fraction on Microstructure, Corrosive-Wear and Electrochemical Properties of Laser Cladded CoCrFeNiMo High-Entropy Alloy Coatings
,”
Tribol. Int.
,
186
, p.
108640
.
27.
Liu
,
H.
,
Gao
,
Q.
,
Dai
,
J.
,
Chen
,
P.
,
Gao
,
W.
,
Hao
,
J.
, and
Yang
,
H.
,
2022
, “
Microstructure and High-Temperature Wear Behavior of CoCrFeNiWx High-Entropy Alloy Coatings Fabricated by Laser Cladding
,”
Tribol. Int.
,
172
, p.
107574
.
28.
Moazzen
,
P.
,
Toroghinejad
,
M. R.
,
Zargar
,
T.
, and
Cavaliere
,
P.
,
2022
, “
Investigation of Hardness, Wear and Magnetic Properties of NiCoCrFeZrx HEA Prepared Through Mechanical Alloying and Spark Plasma Sintering
,”
J. Alloys Compd.
,
892
, p.
161924
.
29.
Kumar
,
H.
,
Bhaduri
,
G. A.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2022
, “
Effect of Annealing on Microstructural and Tribological Properties of CoCrFeNiW0.3 + 5 at% C High Entropy Alloy
,”
J. Mater. Eng. Perform.
,
32
(
14
), pp.
6293
6306
.
30.
Xing
,
Q.
,
Feltrin
,
A. C.
, and
Akhtar
,
F.
,
2021
, “
Processing, Microstructure and High Temperature Dry Sliding Wear of a Cr–Fe–Hf–Mn–Ti–Ta–V High-Entropy Alloy Based Composite
,”
Mater. Today Commun.
,
28
, p.
102657
.
31.
Noble
,
N.
,
Radhika
,
N.
,
Sathishkumar
,
M.
, and
Saleh
,
B.
,
2023
, “
Characterisation and Property Evaluation of High Entropy Alloy Coating on 316L Steel Via Thermal Spray Synthesis
,”
Tribol. Int.
,
185
, p.
108525
.
32.
Tian
,
Y.
,
Lu
,
C.
,
Shen
,
Y.
, and
Feng
,
X.
,
2019
, “
Microstructure and Corrosion Property of CrMnFeCoNi High Entropy Alloy Coating on Q235 Substrate Via Mechanical Alloying Method
,”
Surf. Interfaces
,
15
, pp.
135
140
.
33.
Meghwal
,
A.
,
Anupam
,
A.
,
Murty
,
B. S.
,
Berndt
,
C. C.
,
Kottada
,
R. S.
, and
Ang
,
A. S. M.
,
2020
, “
Thermal Spray High-Entropy Alloy Coatings: A Review
,”
J. Therm. Spray Technol.
,
29
(
5
), pp.
857
893
.
34.
Meghwal
,
A.
,
Anupam
,
A.
,
Schulz
,
C.
,
Hall
,
C.
,
Murty
,
B. S.
,
Kottada
,
R. S.
,
Vijay
,
R.
,
Munroe
,
P.
,
Berndt
,
C. C.
, and
Ang
,
A. S. M.
,
2022
, “
Tribological and Corrosion Performance of an Atmospheric Plasma Sprayed AlCoCr0.5Ni High-Entropy Alloy Coating
,”
Wear
,
506–507
, p.
204443
.
35.
Tejero-Martin
,
D.
,
Bai
,
M.
,
Mata
,
J.
, and
Hussain
,
T.
,
2021
, “
Evolution of Porosity in Suspension Thermal Sprayed YSZ Thermal Barrier Coatings Through Neutron Scattering and Image Analysis Techniques
,”
J. Eur. Ceram. Soc.
,
41
(
12
), pp.
6035
6048
.
36.
Kumar
,
H.
,
Bhaduri
,
G. A.
,
Manikandan
,
S. G. K.
,
Kamaraj
,
M.
, and
Shiva
,
S.
,
2022
, “
Effect of Laser Surface Processing on the Microstructure Evolution and Multiscale Properties of Atmospheric Plasma Sprayed High-Entropy Alloys Coating
,”
J. Therm. Spray Technol.
,
32
(
4
), pp.
831
850
.
37.
Mansour
,
A. N.
, and
Melendres
,
C. A.
,
1994
, “
Characterization of Slightly Hydrated Ni(OH)2 by XPS
,”
Surf. Sci. Spectra
,
3
(
3
), pp.
247
254
.
38.
Pollini
,
I.
,
1994
, “
Photoemission Study of the Electronic Structure of CrCl3 and RuCl3 Compounds
,”
Phys. Rev. B
,
50
(
4
), pp.
2095
2103
.
39.
Shabanova
,
I. N.
, and
Trapeznikov
,
V. A.
,
1975
, “
A Study of the Electronic Structure of Fe3C, Fe3Al and Fe3Si by X-Ray Photoelectron Spectroscopy
,”
J. Electron. Spectrosc. Relat. Phenom.
,
6
(
4
), pp.
297
307
.
40.
Kaplowitz
,
D. A.
,
Jian
,
G.
,
Gaskell
,
K.
,
Jacob
,
R.
, and
Zachariah
,
M. R.
,
2014
, “
Synthesis and Reactive Properties of Iron Oxide-Coated Nanoaluminum
,”
J. Energ. Mater.
,
32
(
2
), pp.
95
105
.
41.
Carson
,
G. A.
,
Nassir
,
M. H.
, and
Langell
,
M. A.
,
1996
, “
Epitaxial Growth of Co3O4 on CoO(100)
,”
J. Vac. Sci. Technol. A
,
14
(
3
), pp.
1637
1642
.
42.
Biesinger
,
M. C.
,
Payne
,
B. P.
,
Grosvenor
,
A. P.
,
Lau
,
L. W. M.
,
Gerson
,
A. R.
, and
Smart
,
R. S. C.
,
2011
, “
Resolving Surface Chemical States in XPS Analysis of First Row Transition Metals, Oxides and Hydroxides: Cr, Mn, Fe, Co and Ni
,”
Appl. Surf. Sci.
,
257
(
7
), pp.
2717
2730
.
43.
Yamamoto
,
Y.
,
Mori
,
M.
, and
Konno
,
H.
,
1981
, “
Paramagnetic Cobalt(III) Complexes With Organic Ligands. VI. An X-Ray Photoelectron Spectroscopic Study
,”
Bull. Chem. Soc. Jpn.
,
54
(
7
), pp.
1995
1998
.
44.
Kadari
,
A.
,
Schemme
,
T.
,
Kadri
,
D.
, and
Wollschläger
,
J.
,
2017
, “
XPS and Morphological Properties of Cr2O3 Thin Films Grown by Thermal Evaporation Method
,”
Results Phys.
,
7
, pp.
3124
3129
.
45.
Zhou
,
Y. J.
,
Zhang
,
Y.
,
Kim
,
T. N.
, and
Chen
,
G. L.
,
2008
, “
Microstructure Characterizations and Strengthening Mechanism of Multi-Principal Component AlCoCrFeNiTi0.5 Solid Solution Alloy With Excellent Mechanical Properties
,”
Mater. Lett.
,
62
(
17–18
), pp.
2673
2676
.
46.
Löbel
,
M.
,
Lindner
,
T.
,
Mehner
,
T.
, and
Lampke
,
T.
,
2017
, “
Microstructure and Wear Resistance of AlCoCrFeNiTi High-Entropy Alloy Coatings Produced by HVOF
,”
Coatings
,
7
(
9
), p.
144
.
47.
Bhaduri
,
G. A.
, and
Šiller
,
L.
,
2013
, “
Nickel Nanoparticles Catalyse Reversible Hydration of Carbon Dioxide for Mineralization Carbon Capture and Storage
,”
Catal. Sci. Technol.
,
3
(
5
), p.
1234
.
48.
Sanjinés
,
R.
,
Tang
,
H.
,
Berger
,
H.
,
Gozzo
,
F.
,
Margaritondo
,
G.
, and
Lévy
,
F.
,
1994
, “
Electronic Structure of Anatase TiO2 Oxide
,”
J. Appl. Phys.
,
75
(
6
), pp.
2945
2951
.
49.
Pan
,
R. K.
,
Feng
,
S.
, and
Tao
,
H. Z.
,
2017
, “
XPS and NMR Analysis on 12CaO•7Al2O3
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
167
, p.
012017
.
50.
Luo
,
J.-W.
,
Song
,
J.-D.
,
Jia
,
W.-Z.
,
Pu
,
Z.-Y.
,
Lu
,
J.-Q.
, and
Luo
,
M.-F.
,
2018
, “
Catalytic Dehydrofluorination of 1,1,1,3,3-Pentafluoropropane to 1,3,3,3-Tetrafluoropropene Over Fluorinated NiO/Cr2O3 Catalysts
,”
Appl. Surf. Sci.
,
433
, pp.
904
913
.
51.
Ai
,
L.
,
Fang
,
G.
,
Yuan
,
L.
,
Liu
,
N.
,
Wang
,
M.
,
Li
,
C.
,
Zhang
,
Q.
,
Li
,
J.
, and
Zhao
,
X.
,
2008
, “
Influence of Substrate Temperature on Electrical and Optical Properties of P-Type Semitransparent Conductive Nickel Oxide Thin Films Deposited by Radio Frequency Sputtering
,”
Appl. Surf. Sci.
,
254
(
8
), pp.
2401
2405
.
52.
Milošev
,
I.
,
Bakarič
,
T.
,
Zanna
,
S.
,
Seyeux
,
A.
,
Rodič
,
P.
,
Poberžnik
,
M.
,
Chiter
,
F.
, et al
,
2019
, “
Electrochemical, Surface-Analytical, and Computational DFT Study of Alkaline Etched Aluminum Modified by Carboxylic Acids for Corrosion Protection and Hydrophobicity
,”
J. Electrochem. Soc.
,
166
(
11
), pp.
C3131
C3146
.
53.
Fantauzzi
,
M.
,
Secci
,
F.
,
Sanna Angotzi
,
M.
,
Passiu
,
C.
,
Cannas
,
C.
, and
Rossi
,
A.
,
2019
, “
Nanostructured Spinel Cobalt Ferrites: Fe and Co Chemical State, Cation Distribution and Size Effects by X-Ray Photoelectron Spectroscopy
,”
RSC Adv.
,
9
(
33
), pp.
19171
19179
.
54.
Ghorai
,
T. K.
, and
Dhak
,
T.
,
2013
, “
New Synthetic Approach, Mesoporous Properties and Photocatalytic Activity of Titania Adapted Chromium-Niobate Nanocatalysts
,”
Adv. Mater. Lett.
,
4
(
2
), pp.
121
130
.
55.
Hofmann
,
S.
,
2012
,
Auger- and X-Ray Photoelectron Spectroscopy in Materials Science: A User-Oriented Guide
,
Springer
,
Berlin
.
56.
Kumar
,
S.
,
Baruah
,
S.
, and
Puzari
,
A.
,
2020
, “
Poly(p-Phenylenediamine)-Based Nanocomposites With Metal Oxide Nanoparticle for Optoelectronic and Magneto-Optic Application
,”
Polym. Bull.
,
77
(
1
), pp.
441
457
.
57.
Gray
,
R. W.
,
Welch
,
M. B.
, and
Ragsdale
,
R. O.
,
1969
, “
A Study of 4-Substituted Acetanilide Complexes of Nickel(II) and Cobalt(II) Perchlorates
,”
Inorg. Chim. Acta
,
3
, pp.
17
20
.
58.
Patel
,
P.
,
Alidokht
,
S. A.
,
Sharifi
,
N.
,
Roy
,
A.
,
Harrington
,
K.
,
Stoyanov
,
P.
,
Chromik
,
R. R.
, and
Moreau
,
C.
,
2022
, “
Microstructural and Tribological Behavior of Thermal Spray CrMnFeCoNi High Entropy Alloy Coatings
,”
J. Therm. Spray Technol.
,
31
(
4
), pp.
1285
1301
.
59.
Tian
,
L.-H.
,
Xiong
,
W.
,
Liu
,
C.
,
Lu
,
S.
, and
Fu
,
M.
,
2016
, “
Microstructure and Wear Behavior of Atmospheric Plasma-Sprayed AlCoCrFeNiTi High-Entropy Alloy Coating
,”
J. Mater. Eng. Perform.
,
25
(
12
), pp.
5513
5521
.
60.
Liu
,
X.
,
Wu
,
Y.
,
Qiu
,
Z.
,
Lu
,
Z.
,
Yao
,
S.
,
Zhuo
,
S.
, and
Zeng
,
D.
,
2022
, “
Simultaneously Enhancing Wear and Corrosion Resistance of HVAF-Sprayed Fe-Based Amorphous Coating From Mo Clad Feedstock
,”
J. Mater. Process. Technol.
,
302
, p.
117465
.
You do not currently have access to this content.