Abstract

To enhance the durability and reliability of high-pressure fuel system components operating with low-viscosity fuels, an analysis of the tribological performance of potential coating material candidates was conducted. This study focuses on evaluating the friction and wear characteristics of various coatings widely used by industry for surface protection, including carbides, nitrides, diamond-like carbon (DLC), and solid lubricants, under accelerated reciprocating ball on flat conditions intended to provide information on longer-term operation in fuel pumps. The tribological performance of these coatings in fuels of varying chemistry and viscosity, including ethanol, decane, dodecane, and aviation fuel (F-24), was compared to the mechanical properties of materials, such as hardness and elastic modulus. Results indicate that carbides show the lowest friction and wear values across different fuel environments. CrN-based coatings demonstrate a decrease in friction and wear in comparison to other nitrides. This comprehensive investigation lays the groundwork for informed design decisions in developing high-performance coatings tailored to withstand the challenges of low-viscosity fuel environments.

References

1.
Wei
,
D.
,
Spikes
,
H.
, and
Korcek
,
S.
,
1999
, “
The Lubricity of Gasoline
,”
Tribol. Trans.
,
42
(
4
), pp.
813
823
.
2.
Bair
,
S.
,
2014
, “
The Pressure and Temperature Dependence of Volume and Viscosity of Four Diesel Fuels
,”
Fuel
,
135
, pp.
112
119
.
3.
Vere
,
R.
,
1969
, “
Lubricity of Aviation Turbine-Fuels
,”
SAE Trans.
,
78
, pp.
2237
2245
.
4.
Tao
,
F.
, and
Appeldoorn
,
J.
,
1968
, “
The Ball-on-Cylinder Test for Evaluating Jet Fuel Lubricity
,”
ASLE Trans.
,
11
(
4
), pp.
345
352
.
5.
Appeldoorn
,
J.
,
Campion
,
R.
,
Ming Feng
,
I.
, and
Tao
,
F.
,
1965
, “
Lubricity Properties of High Temperature Jet Fuels
,”
Prog. Rep.
, p.
114
.
6.
Lacey
,
P.
,
1993
, “
Wear With low-Lubricity Fuels I. Development of a Wear Mapping Technique
,”
Wear
,
160
(
2
), pp.
325
332
.
7.
“Fuel Lubricity Reviewed on JSTOR,” https://www.jstor.org/stable/44746553.
8.
Appeldoorn
,
J. K.
, and
Dukek
,
W. G.
,
1967
, “
Lubricity of Jet Fuels
,”
SAE Trans.
,
75
, pp.
428
440
.
9.
Arkoudeas
,
P.
,
Karonis
,
D.
,
Zannikos
,
F.
, and
Lois
,
E.
,
2014
, “
Lubricity Assessment of Gasoline Fuels
,”
Fuel Process. Technol.
,
122
, pp.
107
119
.
10.
ASTM D5001-23
,
2014
, “
Standard Test Method for Measurement of Lubricity of Aviation Turbine Fuels by the Ball-on-Cylinder Lubricity Evaluator (BOCLE)
,”
ASTM
.
11.
ASTM D6079-18
,
2018
, “
Standard Test Method for Evaluating Lubricity of Diesel Fuels by the High-Frequency Reciprocating Rig (HFRR)
,”
ASTM
.
12.
2011
,
P. MIL-PRF-25017 H, Performance Specification: Lubricity Improver, Fuel Soluble (NATO S-1747)
.
13.
Srivastava
,
S. P.
, and
Hancsok
,
J.
,
2014
,
Fuels and Fuel-Additives
,
John Wiley & Sons
,
Hoboken, NJ
.
14.
Imdadul
,
H.
,
Masjuki
,
H.
,
Kalam
,
M.
,
Zulkifli
,
N.
,
Rashed
,
M.
,
Rashedul
,
H.
,
Monirul
,
I.
, and
Mosarof
,
M.
,
2015
, “
A Comprehensive Review on the Assessment of Fuel Additive Effects on Combustion Behavior in CI Engine Fuelled With Diesel Biodiesel Blends
,”
RSC Adv.
,
5
(
83
), pp.
67541
67567
.
15.
SAE Standard, J313_201706: Diesel Fuels - SAE International.
.
16.
Mozdzen
,
E. C.
,
Wall
,
S. W.
, and
Byfleet
,
W. D.
,
1998
, “
The No-Harm Performance of Lubricity Additives for Low Sulphur Diesel Fuels
,”
SAE Trans.
,
107
, pp.
1496
1503
.
17.
Edwards
,
W.
,
1988
, “Evaluation of Corrosion, Inhibitors as Lubricity Improvers.”
18.
Qu
,
J.
,
Truhan
,
J. J.
, and
Blau
,
P. J.
,
2005
, “
Investigation of the Scuffing Characteristics of Candidate Materials for Heavy Duty Diesel Fuel Injectors
,”
Tribol. Int.
,
38
(
4
), pp.
381
390
.
19.
Lacey
,
P.
,
1993
, “
Wear With Low-Lubricity Fuels II. Correlation Between Wear Maps and Pump Components
,”
Wear
,
160
(
2
), pp.
333
343
.
20.
Lacey
,
P. I.
,
1994
, “
Wear Mechanism Evaluation and Measurement in Fuel-Lubricated Components
,”
US Army Contract Interim Report# BFLRF
,
286
, p.
143
.
21.
Arkoudeas
,
P
,
2022
,
Gasoline Lubricity, Crude Oil - New Technologies and Recent Approaches
,
Intechopen
. DOI: 10.5772/intechopen.101302
22.
da Silva
,
L. C.
,
Libório
,
M. S.
,
Radi
,
P. A.
,
Reis
,
D. A. P.
,
Trava-Airoldi
,
V. J.
,
da Conceição Hermenegildo
,
T. F.
, and
Alves
,
S. M.
,
2023
, “
DLC/a-Si: H Multilayers Films to Improve Wear Resistance of Components of Common Rail Injection System
,”
J. Mater. Res. Technol.
,
26
, pp.
2617
2628
.
23.
Treutler
,
C. P.
,
2005
, “
Industrial use of Plasma-Deposited Coatings for Components of Automotive Fuel Injection Systems
,”
Surf. Coat. Technol.
,
200
(
5–6
), pp.
1969
1975
.
24.
Jacques
,
K.
,
Murthy
,
N.
,
Dixit
,
S.
,
Berman
,
D.
, and
Berkebile
,
S.
,
2021
, “
Method for Tribological Experiment to Study Scuffing Initiation on AISI 52100 Steel and Hard Ceramic Coatings
,”
Tribol. Int.
,
160
, p.
107001
.
25.
Tung
,
S. C.
, and
Gao
,
H.
,
2003
, “
Tribological Characteristics and Surface Interaction Between Piston Ring Coatings and a Blend of Energy-Conserving Oils and Ethanol Fuels
,”
Wear
,
255
(
7–12
), pp.
1276
1285
.
26.
Bandeira
,
A.
,
Trentin
,
R.
,
Aguzzoli
,
C.
,
Maia da Costa
,
M. E. H.
,
Michels
,
A. F.
,
Baumvol
,
I. J. R.
,
Farias
,
M. C. M.
, and
Figueroa
,
C. A.
,
2013
, “
Sliding Wear and Friction Behavior of CrN-Coating in Ethanol and Oil–Ethanol Mixture
,”
Wear
,
301
(
1–2
), pp.
786
794
.
27.
Derelizade
,
K.
,
Venturi
,
F.
,
Wellman
,
R. G.
,
Kholobysov
,
A.
, and
Hussain
,
T.
,
2021
, “
Wear Performance of Graphene Nano Platelets Incorporated WC-Co Coatings Deposited by Hybrid High Velocity Oxy Fuel Thermal Spray
,”
Wear
,
482
, p.
203974
.
28.
Ma
,
G.
,
Lin
,
G.
,
Gong
,
S.
,
Liu
,
X.
,
Sun
,
G.
, and
Wu
,
H.
,
2013
, “
Mechanical and Corrosive Characteristics of Ta/TaN Multilayer Coatings
,”
Vacuum
,
89
, pp.
244
248
.
29.
Shan
,
L.
,
Wang
,
Y.
,
Li
,
J.
,
Jiang
,
X.
, and
Chen
,
J.
,
2015
, “
Improving Tribological Performance of CrN Coatings in Seawater by Structure Design
,”
Tribol. Int.
,
82
, pp.
78
88
.
30.
Lacey
,
P. I.
, and
Howell
,
S. A.
,
1998
, “
Fuel Lubricity Reviewed
,”
SAE Trans.
,
107
, pp.
1461
1479
.
31.
EPA
, “Diesel Fuel Standards and Rulemakings.”
32.
Rodríguez-Fernández
,
J.
,
Ramos
,
A.
,
Sánchez-Valdepeñas
,
J.
, and
Serrano
,
J. R.
,
2019
, “
Lubricity of Paraffinic Fuels Additivated With Conventional and Non-Conventional Methyl Esters
,”
Adv. Mech. Eng.
,
11
(
9
), p.
1687814019877077
.
33.
Hsieh
,
P. Y.
, and
Bruno
,
T. J.
,
2015
, “
A Perspective on the Origin of Lubricity in Petroleum Distillate Motor Fuels
,”
Fuel Process. Technol.
,
129
, pp.
52
60
.
34.
Daud
,
W. R. W.
,
Najafpour
,
G.
, and
Rahimnejad
,
M.
,
2011
, “
Clean Energy for Tomorrow: Towards Zero Emission and Carbon Free Future: A Review
,”
Iranica J. Energy Environ.
,
2
(
3
), pp.
262
273
.
35.
Ji
,
C.
,
Xin
,
G.
,
Wang
,
S.
,
Yang
,
J.
,
Meng
,
H.
, and
Chang
,
K.
,
2022
, “
Application Progress of Zero Carbon and Carbon-Neutral Fuel Internal Combustion Engines
,”
J. Beijing Univ. Technol.
,
43
(
3
), pp.
273
291
.
36.
Ghadami
,
F.
,
Sohi
,
M. H.
, and
Ghadami
,
S.
,
2015
, “
Effect of Bond Coat and Post-Heat Treatment on the Adhesion of Air Plasma Sprayed WC-Co Coatings
,”
Surf. Coat. Technol.
,
261
, pp.
289
294
.
37.
Mazouzi
,
A.
,
Djerdjare
,
B.
,
Triaa
,
S.
,
Rezzoug
,
A.
,
Cheniti
,
B.
, and
Aouadi
,
S. M.
,
2020
, “
Effect of Annealing Temperature on the Microstructure Evolution, Mechanical and Wear Behavior of NiCr–WC–Co HVOF-Sprayed Coatings
,”
J. Mater. Res.
,
35
(
20
), pp.
2798
2807
.
38.
Riedl
,
H.
,
Holec
,
D.
,
Rachbauer
,
R.
,
Polcik
,
P.
,
Hollerweger
,
R.
,
Paulitsch
,
J.
, and
Mayrhofer
,
P. H.
,
2013
, “
Phase Stability, Mechanical Properties and Thermal Stability of Y Alloyed Ti–Al–N Coatings
,”
Surf. Coat. Technol.
,
235
, pp.
174
180
.
39.
Le Bourhis
,
E.
,
Goudeau
,
P.
,
Staia
,
M.
,
Carrasquero
,
E.
, and
Puchi-Cabrera
,
E.
,
2009
, “
Mechanical Properties of Hard AlCrN-Based Coated Substrates
,”
Surf. Coat. Technol.
,
203
(
19
), pp.
2961
2968
.
40.
Chen
,
M.
,
Cai
,
F.
,
Chen
,
W.
,
Wang
,
Q.
, and
Zhang
,
S.
,
2017
, “
Influence of Vacuum Annealing on Structures and Properties of AlTiSiN Coatings With Corrosion Resistance
,”
Surf. Coat. Technol.
,
312
, pp.
25
31
.
41.
Navinšek
,
B.
,
Panjan
,
P.
, and
Gorenjak
,
F.
,
2001
, “
Improvement of Hot Forging Manufacturing With PVD and DUPLEX Coatings
,”
Surf. Coat. Technol.
,
137
(
2–3
), pp.
255
264
.
42.
Macknojia
,
A.
,
Ayyagari
,
A.
,
Zambrano
,
D.
,
Rosenkranz
,
A.
,
Shevchenko
,
E. V.
, and
Berman
,
D.
,
2023
, “
Superlubricity Induced by MXene MoS2 Nanocomposites on Rough Steel Surfaces Under High Contact
,”
ACS Nano
,
17
(
3
), pp.
2421
2430
.
43.
Cairns
,
E.
,
Ayyagari
,
A.
,
McCoy
,
C.
,
Berkebile
,
S.
,
Berman
,
D.
,
Aouadi
,
S. M.
, and
Voevodin
,
A. A.
,
2023
, “
Tribological Behavior of Molybdenum Disulfide and Tungsten Disulfide Sprayed Coatings in Low Viscosity Hydrocarbon Environments
,”
Tribol. Int.
,
179
, p.
108206
.
44.
Guo
,
J.
,
Wang
,
H.
,
Meng
,
F.
,
Liu
,
X.
, and
Huang
,
F.
,
2013
, “
Tuning the H/E* Ratio and E* of AlN Coatings by Copper Addition
,”
Surf. Coat. Technol.
,
228
, pp.
68
75
.
45.
Leyland
,
A.
, and
Matthews
,
A.
,
2000
, “
On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour
,”
Wear
,
246
(
1–2
), pp.
1
11
.
46.
Beake
,
B. D.
,
2022
, “
The Influence of the H/E Ratio on Wear Resistance of Coating Systems—Insights From Small-Scale Testing
,”
Surf. Coat. Technol.
,
442
, p.
128272
.
You do not currently have access to this content.