The design and development of current and future gas turbine engines for aircraft propulsion have focused on operating the high pressure turbine at increasingly elevated temperatures and pressures. The drive toward thermal operating conditions near theoretical stoichiometric limits as well as increasingly stringent requirements on reducing harmful emissions both equate to the temperature profiles exiting combustors and entering turbines becoming less peaked than in the past. This drive has placed emphasis on determining how different types of inlet temperature and pressure profiles affect the first stage airfoil endwalls. The goal of the current study was to investigate how different radial profiles of temperature and pressure affect the heat transfer along the vane endwall in a high pressure turbine. Testing was performed in the Turbine Research Facility located at the Air Force Research Laboratory using an inlet profile generator. Results indicate that the convection heat transfer coefficients are influenced by both the inlet pressure profile shape and the location along the endwall. The heat transfer driving temperature for inlet profiles that are nonuniform in temperature is also discussed.

1.
Zess
,
G.
, and
Thole
,
K.
, 1999, “
Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane
,” ASME Paper No. 2001-GT-0404.
2.
Lethander
,
A.
,
Thole
,
K.
,
Zess
,
G.
, and
Wagner
,
J.
, 2003, “
Optimizing the Vane-Endwall Junction to Reduce Adiabatic Wall Temperatures in a Turbine Vane Passage
,” ASME Paper No. GT2003-38940.
3.
Hermanson
,
K.
, and
Thole
,
K.
, 2000, “
Effect of Inlet Conditions on Endwall Secondary Flows
,”
J. Propul. Power
0748-4658,
16
(
2
), pp.
286
296
.
4.
Munk
,
M.
, and
Prim
,
R. C.
, 1947, “
On the Multiplicity of Steady Gas Flows Having the Same Streamline Pattern
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
33
, pp.
137
141
.
5.
Lakshminarayana
,
B.
, 1975, “
Effects of Inlet Temperature Gradients on Turbomachinery Performance
,”
ASME J. Eng. Power
0022-0825,
97
, pp.
64
74
.
6.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
866
874
.
7.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies-Part 1: Endwall Effectiveness Measurements
,” ASME Paper No. GT2002-30526.
8.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G.
, 2002, “
Combustor-Turbine Interface Studies-Part 2: Flow and Thermal Field Measurements
,” ASME Paper No. GT2002-30527.
9.
Kost
,
F.
, and
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part I-Aerodynamic Measurements
,” ASME Paper No. 2001-GT-0145.
10.
Kang
,
M.
,
Kohli
,
A.
, and
Thole
,
K. A.
, 1999, “
Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall
,”
ASME J. Turbomach.
0889-504X,
121
(
3
), pp.
558
568
.
11.
Radomsky
,
R.
, and
Thole
,
K. A.
, 2000, “
High Freestream Turbulence Effects in the Endwall Leading Edge Region
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
699
708
.
12.
Blair
,
M. F.
, 1974, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
ASME J. Heat Transfer
0022-1481,
96
(
4
), pp.
524
529
.
13.
Haldeman
,
C.
, and
Dunn
,
M.
, 2004, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
101
109
.
14.
Povey
,
T.
,
Chana
,
K.
,
Jones
,
T.
, and
Hurrion
,
J.
, 2005, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,” ASME Paper No. GT2005-69066.
15.
Nicklas
,
M.
, 2001, “
Film-Cooled Turbine Endwall in a Transonic Flow Field: Part II-Heat Transfer and Film-Cooling Effectiveness Measurements
,” ASME Paper No. 2001-GT-0146.
16.
Graziani
,
R.
,
Blair
,
M.
,
Taylor
,
J.
, and
Mayle
,
R.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
17.
Haldeman
,
C. W.
,
Dunn
,
M. G.
,
MacArthur
,
C. D.
, and
Murawski
,
C. G.
, 1992, “
The USAF Advanced Turbine Aerothermal Research Rig (ATARR)
,”
NATO AGARD Propulsion and Energetics Panel Conference Proceedings
, Vol.
527
,
Antalya
,
Turkey
.
18.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2007, “
Experimental Evaluation of an Inlet Profile Generator for High-Pressure Turbine Tests
,”
ASME J. Turbomach.
0889-504X,
129
(
2
), pp.
382
393
.
19.
Jones
,
T. V.
, 1995, “
The Thin Film Heat Transfer Gauge-A History and New Developments
.”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
209
(
C510
), pp.
150
160
.
20.
Moffat
,
R. J.
, 1982, “
Contributions to the Theory of a Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
0098-2202,
104
, pp.
250
260
.
21.
Kang
,
M.
, and
Thole
,
K. A.
, 2000, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
458
466
.
22.
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Polanka
,
M. D.
, 2009, “
Effects of Combustor Exit Profiles on Vane Aerodynamic Loading and Heat Transfer in a High Pressure Turbine
,”
ASME J. Turbomach.
0889-504X,
131
(
2
), p.
021008
.
You do not currently have access to this content.