Detailed film-cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The applicability of the PSP technique is expanded to include a coolant-to-mainstream density ratio of 1.4. The effect of density ratio on the film-cooling effectiveness is coupled with varying blowing ratio (M=0.252.0), freestream turbulence intensity (Tu=112.5%), and film hole geometry. The effectiveness distributions are obtained on three separate flat plates containing either simple angle, cylindrical holes, simple angle, fanshaped holes (α=10deg), or simple angle, laidback, fanshaped holes (α=10deg and γ=10deg). In all three cases, the film-cooling holes are angled at θ=35deg from the mainstream flow. Using the PSP technique, the combined effects of blowing ratio, turbulence intensity, and density ratio are captured for each film-cooling geometry. The detailed film-cooling effectiveness distributions, for cylindrical holes, clearly show that the effectiveness at the lowest blowing ratio is enhanced at the lower density ratio (DR=1). However, as the blowing ratio increases, a transition occurs, leading to increased effectiveness with the elevated density ratio (DR=1.4). In addition, the PSP technique captures an upstream shift of the coolant jet reattachment point as the density ratio increases or the turbulence intensity increases (at moderate blowing ratios for cylindrical holes). With the decreased momentum of the shaped film-cooling holes, the greatest film-cooling effectiveness is obtained at the lower density ratio (DR=1.0) over the entire range of blowing ratios considered. In all cases, as the freestream turbulence intensity increases, the film effectiveness decreases; this effect is reduced as the blowing ratio increases for all three film hole configurations.

1.
Goldstein
,
R. J.
,
Eckert
,
E. G.
, and
Burggraf
,
R.
, 1974, “
Effects of Hole Geometry and Density on Three Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
2.
Sen
,
B.
,
Schmidt
,
D. L.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
800
806
.
3.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
, 1996, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
807
813
.
4.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
327
336
.
5.
Hyams
,
D. G.
, and
Leylek
,
J. H.
, 1997, “
A Detailed Analysis of Film Cooling Physics Part III: Streamwise Injection With Shaped Holes
,”
ASME
Paper No. 97-GT-271.
6.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
, 1997, “
A Detailed Analysis of Film Cooling Physics Part IV: Compound-Angle Injection With Shaped Holes
,”
ASME
Paper No. 97-GT-272.
7.
Goldstein
,
R. J.
,
Eckert
,
E. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
, 1970, “
Film Cooling Following Injection Through Inclined Circular Tubes
,”
Isr. J. Technol.
0021-2202,
8
, pp.
145
154
.
8.
Jubran
,
B.
, and
Brown
,
A.
, 1985, “
Film Cooling From Two Rows of Holes Inclined in the Streamwise and Spanwise Directions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
84
91
.
9.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Kim
,
B. G.
, 2001, “
Enhancement of Film Cooling Performance Using a Shaped Film Cooling Hole With Compound Angle Injection
,”
JSME Int. J., Ser. B
1340-8054,
44
(
1
), pp.
99
110
.
10.
Jabbari
,
M. Y.
, and
Goldstein
,
R. J.
, 1978, “
Adiabatic Wall Temperature and Heat Transfer Downstream of Injection Through Two Rows of Holes
,”
ASME J. Eng. Power
0022-0825,
100
, pp.
303
307
.
11.
Jubran
,
B. A.
, and
Maiteh
,
B. Y.
, 1999, “
Film Cooling and Heat Transfer From a Combination of Two Rows of Simple and/or Compound Angle Holes in Inline and/or Staggered Configurations
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
495
502
.
12.
Ligrani
,
P. M.
,
Wigle
,
J. M.
,
Ciriello
,
S.
, and
Jackson
,
S. M.
, 1994, “
Film Cooling From Holes With Compound Angle Orientations: Part 1: Results Downstream of Two Staggered Rows of Holes With 3D Spanwise Spacing
,”
Int. J. Heat Mass Transfer
0017-9310,
116
, pp.
341
352
.
13.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Freestream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
65
73
.
14.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part A: Jet-Mainstream Interaction
,”
ASME J. Eng. Power
0022-0825,
101
, pp.
459
465
.
15.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part B: Film Cooling Performance
,”
ASME J. Eng. Power
0022-0825,
101
, pp.
466
470
.
16.
Jumper
,
G. W.
,
Elrod
,
W. C.
, and
Rivir
,
R. B.
, 1991, “
Film Cooling Effectiveness in High Turbulence Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
479
483
.
17.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
, 1996, “
The Effect of High Freestream Turbulence on Film Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
814
825
.
18.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine Blade Heat Transfer Coefficient Distribution
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
249
256
.
19.
Teng
,
S.
,
Han
,
J. C.
, and
Poinsatte
,
P. E.
, 2001, “
Effect of Film-Hole Shape on Turbine Blade Film Cooling Performance
,”
J. Thermophys. Heat Transfer
0887-8722,
15
, pp.
257
265
.
20.
Zhang
,
L. J.
, and
Jaiswal
,
R. S.
, 2001, “
Turbine Nozzle Endwall Film Cooling Study Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
735
.
21.
Zhang
,
L. J.
, and
Moon
,
H. K.
, 2003, “
Turbine Nozzle Endwall Inlet Film Cooling—The Effect of a Backward Facing Step
,”
ASME
Paper No. GT2003-38319.
22.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005-72363.
23.
Gao
,
Z.
,
Wright
,
L. M.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP and Transient IR Measurement Techniques for Leading Edge Film Cooling
,”
ASME
Paper No. IMECE2005-80146.
24.
Ahn
,
J.
,
Mhetras
,
S.
, and
Han
,
J. C.
, 2004, “
Film-Cooling Effectiveness on a Gas Turbine Blade Tip Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2004-53249.
25.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2004, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Turbine Blade
,”
ASME
Paper No. IMECE2004-59852.
26.
Ahn
,
J.
,
Schobeiri
,
M. T.
,
Han
,
J. C.
, and
Moon
,
H. K.
, 2005, “
Film Cooling Effectiveness on the Leading Edge of a Rotating Film-Cooled Blade Using Pressure Sensitive Paint
,”
ASME
Paper No. GT2005-68344.
27.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
, “
Film Cooling Effectiveness on a Rotating Blade Platform
,”
ASME
Paper No. GT2006-90034.
28.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
29.
Kohli
,
A.
, and
Bogard
,
D. G.
, 1997, “
Adiabatic Effectiveness, Thermal Fields, and Velocity Files From Film Cooling With Large Injection
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
352
358
.
You do not currently have access to this content.