An experimental investigation of film cooling jet structure using two-dimensional particle image velocimetry (PIV) has been completed for cylindrical, simple angle (θ=35deg) film cooling holes. The PIV measurements are coupled with detailed film cooling effectiveness distributions on the flat plate obtained using a steady state, pressure sensitive paint (PSP) technique. Both the flow and surface measurements were performed in a low speed wind tunnel where the freestream turbulence intensity was varied from 1.2% to 12.5%. With this traditional film cooling configuration, the blowing ratio was varied from 0.5 to 1.5 to compare the jet structure of relatively low and high momentum cooling flows. Velocity maps of the coolant flow (in the streamwise direction) are obtained on three planes spanning a single hole: centerline, 0.25D, and 0.5D (outer edge of the film cooling hole). From the seeded jets, time averaged, mean velocity distributions of the film cooling jets are obtained near the cooled surface. In addition, turbulent fluctuations are obtained for each flow condition. Combining the detailed flow field measurements obtained using PIV (both instantaneous and time averaged) with detailed film cooling effectiveness distributions on the surface (PSP) provides a more complete view of the coolant jet-mainstream flow interaction. Near the edge of the film cooling holes, the turbulent mixing increases, and as a result the film cooling effectiveness decreases. Furthermore, the PIV measurements show the increased mixing of the coolant jet with the mainstream at the elevated freestream turbulence level resulting in a reduction in the jet to effectively protect the film cooled surface.

1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
, pp.
540
559
.
2.
Bogard
,
D. G.
, and
Thole
,
K. A.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
0748-4658,
22
, pp.
249
270
.
3.
Goldstein
,
R. J.
,
Eckert
,
E. G.
, and
Burggraf
,
R.
, 1974, “
Effects of Hole Geometry and Density on Three Dimensional Film-Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
4.
Goldstein
,
R. J.
,
Eckert
,
E. G.
,
Eriksen
,
V. L.
, and
Ramsey
,
J. W.
, 1970, “
Film-Cooling Following Injection Through Inclined Circular Tubes
,”
Isr. J. Technol.
0021-2202,
8
, pp.
145
154
.
5.
Jubran
,
B.
, and
Brown
,
A.
, 1985, “
Film-Cooling From Two Rows of Holes Inclined in the Streamwise and Spanwise Directions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
84
91
.
6.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Kim
,
B. G.
, 2001, “
Enhancement of Film-Cooling Performance Using a Shaped Film-Cooling Hole With Compound Angle Injection
,”
JSME Int. J., Ser. B
1340-8054,
44
(
1
), pp.
99
110
.
7.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
, 2003, “
Free-Stream Turbulence Effects on Film-Cooling With Shaped Holes
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
65
73
.
8.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part A: Jet-Mainstream Interaction
,”
ASME J. Eng. Power
0022-0825,
101
, pp.
459
465
.
9.
Kadotani
,
K.
, and
Goldstein
,
R. J.
, 1979, “
On the Nature of Jets Entering a Turbulent Flow Part B: Film-Cooling Performance
,”
ASME J. Eng. Power
0022-0825,
101
, pp.
466
470
.
10.
Jumper
,
G. W.
,
Elrod
,
W. C.
, and
Rivir
,
R. B.
, 1991, “
Film-Cooling Effectiveness in High Turbulence Flow
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
479
483
.
11.
Bons
,
J. P.
,
MacArthur
,
C. D.
, and
Rivir
,
R. B.
, 1996, “
The Effect of High Free-Stream Turbulence on Film-Cooling Effectiveness
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
814
825
.
12.
Andreopoulos
,
J.
, and
Rodi
,
W.
, 1984, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
0022-1120,
138
, pp.
93
127
.
13.
Subramanian
,
C. S.
,
Ligrani
,
P. M.
,
Green
,
J. G.
,
Doner
,
W. D.
, and
Kaisuwan
,
P.
, 1992, “
Development and Structure of a Film Cooling Jet in a Turbulent Boundary Layer With Heat Transfer
,”
Rotating Machinery Transport Phenomena (ISROMAC-3)
, pp.
53
68
.
14.
Thole
,
K.
,
Gritsh
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1998, “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
327
336
.
15.
Gogineni
,
L.
,
Goss
,
D.
,
Pestian
,
D.
, and
Rivir
,
R.
, 1998, “
Two-Color Digital PIV Employing a Single CCD Camera
,”
Exp. Fluids
0723-4864,
25
, pp.
320
328
.
16.
Bernsdorf
,
S.
,
Rose
,
M. G.
, and
Abhari
,
R. S.
, 2006, “
Modeling of Film Cooling—Part I: Experimental Study of Flow Structure
,”
ASME J. Turbomach.
0889-504X,
128
, pp.
141
149
.
17.
Aga
,
V.
,
Rose
,
M.
, and
Abhari
,
R. S.
, 2008, “
Experimental Flow Structure Investigation of Compound Angled Film Cooling
,”
ASME J. Turbomach.
0889-504X,
130
, p.
031005
.
18.
Harrison
,
K. L.
, and
Bogard
,
D. G.
, 2008, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME
Paper No. GT2008-51423.
19.
Renze
,
P.
,
Schroder
,
W.
, and
Meinke
,
M.
, 2008, “
Large-Eddy Simulation of Film Cooling Flows at Density Gradients
,”
Int. J. Heat Fluid Flow
0142-727X,
29
, pp.
18
34
.
20.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
, 2010, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME
Paper No. GT2010-23053.
21.
Wright
,
L. M.
,
Gao
,
Z.
,
Varvel
,
T. A.
, and
Han
,
J. C.
, 2005, “
Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling
,”
ASME
Paper No. HT2005-72363.
22.
Sveen
,
J. K.
, 2004, “
An Introduction to MatPIV v. 1.6.1
,” software documentation.
23.
Coleman
,
H. W.
, and
Steele
,
W. G.
, 1999,
Experimentation and Uncertainty Analysis for Engineers
,
Wiley
,
New York
.
You do not currently have access to this content.