The effect of a step positioned upstream of a row of film-cooling holes on the film-cooling effectiveness is studied systematically using the steady state pressure sensitive paint technique. The upstream step effect is studied on four separate hole geometries: simple angled (axial angle of 30 deg) and compound angled (axial angle of 30 deg and compound angle of 45 deg) and cylindrical and fan-shaped film-cooling holes. Each plate considered has seven holes, each hole 4 mm in diameter. The plates with cylindrical holes have a spacing of 3 diameters (12 mm) between the centers of two consecutive holes while the fan-shaped holes have a spacing of 3.75 diameters (15 mm). Three different step heights (12.5%d, 25%d, and 37.5%d) are studied. The effect of the width of the step is also studied; the distance of the step upstream of the hole and the positioning of the step downstream of the film-cooling hole. Four separate blowing ratios are reported for all tests: M=0.3, M=0.6, M=1.0, and M=1.5. All studies have been conducted with a mainstream of 25 m/s velocity at an ambient temperature of 22°C. Results indicate an increase in film-cooling effectiveness in the region near the hole due to the upstream step for all the plates considered. This increase due to the step is found to be most significant in the case of compound angled cylindrical holes and least significant in the case of simple angled fan-shaped holes.

1.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
New York
.
2.
Bogard
,
D.
, and
Thole
,
K.
, 2006, “
Gas Turbine Film Cooling
,”
J. Propul. Power
0748-4658,
22
, pp.
249
270
.
3.
Moffat
,
R. J.
, 1985, “
Turbine Blade Cooling
,”
Symposium on Heat Transfer in Rotating Machinery
, HI.
4.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
, 1996 “
Flowfield Measurements for Film Cooling Holes With Expanded Exits
,” ASME Paper No. 96-GT-174.
5.
Bunker
,
R. S.
, 2005, “
A Review of Shaped Hole Turbine Film Cooling Technology
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
441
453
.
6.
Goldstein
,
R.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
, 1974, “
Effects of Hole Geometry and Density on Three Dimensional Film-Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
595
607
.
7.
Goldstein
,
R.
,
Eckert
,
G.
,
Eriksen
,
V.
, and
Ramsey
,
J.
, 1970, “
Film-Cooling Following Injection Through Inclined Circular Tubes
,”
Isr. J. Technol.
0021-2202,
8
, pp.
145
154
.
8.
Jubran
,
B.
, and
Brown
,
A.
, 1985, “
Film-Cooling From Two Rows of Holes Inclined in the Streamwise and Spanwise Directions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
84
91
.
9.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
, 1991, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
0889-504X,
113
, pp.
442
449
.
10.
Pedersen
,
D.
,
Eckert
,
G.
, and
Goldstien
,
R.
, 1977, “
Film-Cooling With Large Density Differences and Mainstream Secondary Fluid Measured by the Heat-Mass Transfer Analogy
,”
ASME J. Heat Transfer
0022-1481,
99
, pp.
620
627
.
11.
Waye
,
S.
, and
Bogard
,
D.
, 2007, “
High Resolution Film-Cooling Effectiveness Measurements of Axial Holes Embedded in a Transverse Trench With Various Trench Configurations
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
294
302
.
12.
Bunker
,
R. S.
, 2001, “
Film Cooling Effectiveness Due to Discrete Holes Within a Transverse Surface Slot
,” ASME Paper No. 2001-GT-0126.
13.
Harrison
,
K.
,
Dorrington
,
J.
,
Dees
,
J.
, and
Bogard
,
D.
, 2007, “
Turbine Airfoil Net Heat Flux Reduction With Cylindrical Holes Embedded in a Transverse Trench
,” ASME Paper No. GT2007-27966.
14.
Na
,
S.
, and
Shih
,
T.
, 2007, “
Increasing Adiabatic Film Cooling Effectiveness Using an Upstream Ramp
,”
ASME J. Heat Transfer
0022-1481,
129
, pp.
464
471
.
15.
Barigozzi
,
G.
,
Franchini
,
G.
, and
Perdichizzi
,
A.
, 2007, “
The Effect of an Upstream Ramp on Cylindrical and Fan Shaped Film Cooling Hole Film Cooling—Part II Adiabatic Film Cooling Effectivness
,” ASME Paper No. GT2007-27079.
16.
Wright
,
L.
,
Gao
,
Z.
,
Varvel
,
T.
, and
Han
,
J. C.
, 2005,“
Assessment of Steady State PSP, TSP and IR Measurement Techniques for Flat Plate Film Cooling
,” ASME Paper No. HT2005-72363.
17.
Zhang
,
L.
, and
Jaiswal
,
R.
, 2001, “
Turbine Nozzle Endwall Film-Cooling Study Using Pressure Sensitive Paint
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
730
738
.
18.
Narzary
,
D. P.
,
Gao
,
Z.
,
Mhetras
,
S.
, and
Han
,
J. C.
, 2007, “
Effect of Unsteady Wake on Film Cooling Effectiveness Distribution on a Gas Turbine Blade With Compound Shaped Holes
,” ASME Paper No. GT2007-27070.
19.
Zhang
,
L.
, and
Fox
,
M.
, 1999, “
Flat Plate Film-Cooling Measurements Using PSP Gas Chromatograph Techniques
,”
Proceedings of the Fifth ASME/JSME Joint Thermal Engineering Conference
, San Diego, CA.
20.
Young
,
C. D.
,
Han
,
J. C.
,
Huang
,
Y.
, and
Rivir
,
R. B.
, 1992, “
Influence of Jet-Grid Turbulence on Flat Plate Turbulent Boundary Layer Flow and Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
114
, pp.
65
72
.
21.
Liu
,
T.
,
Campbell
,
B.
,
Burns
,
S.
, and
Sullivan
,
J. P.
, 1997, “
Temperature Are Pressure Sensitive Luminescent Paints in Aerodynamics
,”
Appl. Mech. Rev.
0003-6900,
50
(
4
), pp.
227
246
.
22.
Goldstein
,
R. J.
, and
Jin
,
P.
, 2001, “
Film Cooling Downstream of a Row of Discrete Holes With Compound Angle
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
222
230
.
23.
Ligrani
,
P. M.
,
Wigle
,
J. M.
, and
Jackson
,
S. W.
, 1994, “
Film Cooling From Holes With Compound Angle Orientation Part 2: Results Downstream of a Single Row of Holes With 6D Spanwise Spacing
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
353
362
.
24.
Kline
,
S. J.
, and
McLintok
,
F. A.
, 1953, “
Describing Uncertainties in a Single Sample Experiment
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
You do not currently have access to this content.