Multiple thermal protection techniques, including thermal barrier coatings (TBCs), internal cooling and external cooling, are employed for gas turbine components to reduce metal temperatures and extend component life. Understanding the interaction of these cooling methods, in particular, provides valuable information for the design stage. The current study builds upon a conjugate heat transfer model of a blade endwall to examine the impact of a TBC on the cooling performance. The experimental data with and without TBC are compared to results from conjugate computational fluid dynamics (CFD) simulations. The cases considered include internal impingement jet cooling and film cooling at different blowing ratios with and without a TBC. Experimental and computational results indicate the TBC has a profound effect, reducing scaled wall temperatures for all cases. The TBC effect is shown to be more significant than the effect of increasing blowing ratio. The computational results, which agree fairly well to the experimental results, are used to explain why the improvement with TBC increases with blowing ratio. Additionally, the computational results reveal significant temperature gradients within the endwall, and information on the flow behavior within the impingement channel.

References

1.
Padture
,
N. P.
,
Gell
,
M.
, and
Jordan
,
E. H.
,
2002
, “
Thermal Barrier Coatings for Gas-Turbine Engine Applications
,”
Science
,
296
(
5566
), pp.
280
284
.10.1126/science.1068609
2.
Mensch
,
A.
, and
Thole
,
K. A.
,
2014
, “
Overall Effectiveness of a Blade Endwall With Jet Impingement and Film Cooling
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031901
.10.1115/1.4025835
3.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No. GT2004-53998. 10.1115/GT2004-53998
4.
Hylton
,
L. D.
,
Mihelc
,
M. S.
,
Turner
,
E. R.
,
Nealy
,
D. A.
, and
York
,
R. E.
,
1983
, “
Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surfaces of Turbine Vanes
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-168015.
5.
Hylton
,
L. D.
,
Nirmalan
,
V.
,
Sultanian
,
B. K.
, and
Kauffman
,
R. M.
,
1988
, “
The Effects of Leading Edge and Downstream Film Cooling on Turbine Vane Heat Transfer
,” NASA, Washington, DC, Report No. NASA-CR-182133.
6.
Turner
,
E. R.
,
Wilson
,
M. D.
,
Hylton
,
L. D.
, and
Kauffman
,
R. M.
,
1985
, “
Turbine Vane External Heat Transfer. Volume 1: Analytical and Experimental Evaluation of Surface Heat Transfer Distributions With Leading Edge Showerhead Film Cooling
,” NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-174827.
7.
Kang
,
M. B.
, and
Thole
,
K. A.
,
2000
, “
Flowfield Measurements in the Endwall Region of a Stator Vane
,”
ASME J. Turbomach.
,
122
(
3
), pp.
458
466
.10.1115/1.1303703
8.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Computational Predictions of Heat Transfer and Film-Cooling for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
4
), p.
041003
.10.1115/1.4002951
9.
Maikell
,
J.
,
Bogard
,
D.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2011
, “
Experimental Simulation of a Film Cooled Turbine Blade Leading Edge Including Thermal Barrier Coating Effects
,”
ASME J. Turbomach.
,
133
(
1
), p.
011014
.10.1115/1.4000537
10.
Davidson
,
F. T.
,
Kistenmacher
,
D. A.
, and
Bogard
,
D. G.
,
2014
, “
Film Cooling With a Thermal Barrier Coating: Round Holes, Craters, and Trenches
,”
ASME J. Turbomach.
,
136
(
4
), p.
041007
.10.1115/1.4024883
11.
Na
,
S.
,
Williams
,
B.
,
Dennis
,
R. A.
,
Bryden
,
K. M.
, and
Shih
,
T. I.-P.
,
2007
, “
Internal and Film Cooling of a Flat Plate With Conjugate Heat Transfer
,”
ASME
Paper No. GT2007-27599. 10.1115/GT2007-27599
12.
Panda
,
R. K.
, and
Prasad
,
B. V. S. S. S.
,
2012
, “
Conjugate Heat Transfer From a Flat Plate With Combined Impingement and Film Cooling
,”
ASME
Paper No. GT2012-68830. 10.1115/GT2012-68830
13.
Dobrowolski
,
L. D.
,
Bogard
,
D. G.
,
Piggush
,
J.
, and
Kohli
,
A.
,
2009
, “
Numerical Simulation of a Simulated Film Cooled Turbine Blade Leading Edge Including Conjugate Heat Transfer Effects
,”
ASME
Paper No. IMECE2009-11670. 10.1115/IMECE2009-11670
14.
Ravelli
,
S.
,
Dobrowolski
,
L.
, and
Bogard
,
D. G.
,
2010
, “
Evaluating the Effects of Internal Impingement Cooling on a Film Cooled Turbine Blade Leading Edge
,”
ASME
Paper No. GT2010-23002. 10.1115/GT2010-23002
15.
Mouzon
,
B. D.
,
Terrell
,
E. J.
,
Albert
,
J. E.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002. 10.1115/GT2005-69002
16.
Ledezma
,
G. A.
,
Laskowski
,
G. M.
,
Dees
,
J. E.
, and
Bogard
,
D. G.
,
2011
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up Simulated Gas Turbine Vane: Part II—Numerical Simulation
,”
ASME
Paper No. GT2011-46616. 10.1115/GT2011-46616
17.
Dees
,
J. E.
,
Bogard
,
D. G.
,
Ledezma
,
G. A.
, and
Laskowski
,
G. M.
,
2013
, “
Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane
,”
ASME J. Turbomach.
,
135
(
5
), p.
051017
.10.1115/1.4023105
18.
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2012
, “
Evaluation of CFD Simulations of Film Cooling Performance on a Turbine Vane Including Conjugate Heat Transfer Effects
,”
ASME
Paper No. GT2012-69107. 10.1115/GT2012-69107
19.
Williams
,
R. P.
,
Dyson
,
T. E.
,
Bogard
,
D. G.
, and
Bradshaw
,
S. D.
,
2014
, “
Sensitivity of the Overall Effectiveness to Film Cooling and Internal Cooling on a Turbine Vane Suction Side
,”
ASME J. Turbomach.
,
136
(
3
), p.
031006
.10.1115/1.4024681
20.
Ni
,
R. H.
,
Humber
,
W.
,
Fan
,
G.
,
Johnson
,
P. D.
,
Downs
,
J.
,
Clark
,
J. P.
, and
Koch
,
P. J.
,
2011
, “
Conjugate Heat Transfer Analysis for a Film-Cooled Turbine Vane
,”
ASME
Paper No. GT2011-45920. 10.1115/GT2011-45920
21.
Ni
,
R. H.
,
Humber
,
W.
,
Fan
,
G.
,
Clark
,
J. P.
,
Anthony
,
R. J.
, and
Johnson
,
J. J.
,
2013
, “
Comparison of Predictions From Conjugate Heat Transfer Analysis of a Film-Cooled Turbine Vane to Experimental Data
,”
ASME
Paper No. GT2013-94716. 10.1115/GT2013-94716
22.
Lynch
,
S. P.
,
Thole
,
K. A.
,
Kohli
,
A.
, and
Lehane
,
C.
,
2011
, “
Heat Transfer for a Turbine Blade With Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
133
(
1
), p.
011019
.10.1115/1.4000542
23.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface—Part 1: Average Heat Transfer
,”
ASME J. Eng. Power
,
102
(
4
), pp.
994
999
.10.1115/1.3230372
24.
Kistenmacher
,
D. A.
,
2013
, “
Experimental Investigation of Film Cooling and Thermal Barrier Coatings on a Gas Turbine Vane With Conjugate Heat Transfer Effects
,” M.S. thesis, University of Texas at Austin, Austin, TX.
25.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.10.1115/1.3072494
26.
Feuerstein
,
A.
,
Knapp
,
J.
,
Taylor
,
T.
,
Ashary
,
A.
,
Bolcavage
,
A.
, and
Hitchman
,
N.
,
2008
, “
Technical and Economical Aspects of Current Thermal Barrier Coating Systems for Gas Turbine Engines by Thermal Spray and EBPVD: A Review
,”
J. Therm. Spray Technol.
,
17
(
2
), pp.
199
213
.10.1007/s11666-007-9148-y
27.
Soechting
,
F. O.
,
1999
, “
A Design Perspective on Thermal Barrier Coatings
,”
J. Therm. Spray Technol.
,
8
(
4
), pp.
505
511
.10.1361/105996399770350179
28.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
29.
Praisner
,
T. J.
,
Allen-Bradley
,
E.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
, and
Sjolander
,
S. A.
,
2007
, “
Application of Non-Axisymmetric Endwall Contouring to Conventional and High-Lift Turbine Airfoils
,”
ASME
Paper No. GT2007-27579. 10.1115/GT2007-27579
30.
Knezevici
,
D. C.
,
Sjolander
,
S. A.
,
Praisner
,
T. J.
,
Allen-Bradley
,
E.
, and
Grover
,
E. A.
,
2010
, “
Measurements of Secondary Losses in a Turbine Cascade With the Implementation of Nonaxisymmetric Endwall Contouring
,”
ASME J. Turbomach.
,
132
(
1
), p.
011013
.10.1115/1.3072520
31.
Praisner
,
T. J.
,
Grover
,
E. A.
,
Knezevici
,
D. C.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Clark
,
J. P.
, and
Sondergaard
,
R.
,
2008
, “
Toward the Expansion of Low-Pressure-Turbine Airfoil Design Space
,”
ASME
Paper No. GT2008-50898. 10.1115/GT2008-50898
32.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
,
1999
, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Numbers
,”
AIAA
Paper No. 99-0242.10.2514/6.1999-242
33.
Murawski
,
C. G.
, and
Vafai
,
K.
,
2000
, “
An Experimental Investigation of the Effect of Freestream Turbulence on the Wake of a Separated Low-Pressure Turbine Blade at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
431
433
.10.1115/1.483281
34.
Mahallati
,
A.
,
McAuliffe
,
B. R.
,
Sjolander
,
S. A.
, and
Praisner
,
T. J.
,
2007
, “
Aerodynamics of a Low-Pressure Turbine Airfoil at Low-Reynolds Numbers: Part 1—Steady Flow Measurements
,”
ASME
Paper No. GT2007-27347. 10.1115/GT2007-27347
35.
Zoric
,
T.
,
Popovic
,
I.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2007
, “
Comparative Investigation of Three Highly Loaded LP Turbine Airfoils: Part I—Measured Profile and Secondary Losses at Design Incidence
,”
ASME
Paper No. GT2007-27537. 10.1115/GT2007-27537
36.
Popovic
,
I.
,
Zhu
,
J.
,
Dai
,
W.
,
Sjolander
,
S. A.
,
Praisner
,
T.
, and
Grover
,
E.
,
2006
, “
Aerodynamics of a Family of Three Highly Loaded Low-Pressure Turbine Airfoils: Measured Effects of Reynolds Number and Turbulence Intensity in Steady Flow
,”
ASME
Paper No. GT2006-91271. 10.1115/GT2006-91271
37.
Lawson
,
S. A.
,
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2013
, “
Simulations of Multiphase Particle Deposition on a Nonaxisymmetric Contoured Endwall With Film-Cooling
,”
ASME J. Turbomach.
,
135
(
3
), p.
031032
.10.1115/1.4007598
38.
ANSYS, 2010, ANSYS FLUENT, version 13.0.0, ANSYS, Inc., Cannonsburg, PA.
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
40.
Schwänen
,
M.
, and
Duggleby
,
A.
,
2009
, “
Identifying Inefficiencies in Unsteady Pin Fin Heat Transfer
,”
ASME
Paper No. GT2009-60219. 10.1115/GT2009-60219
41.
Snedden
,
G.
,
Dunn
,
D.
,
Ingram
,
G.
, and
Gregory-Smith
,
D.
,
2009
, “
The Application of Non-Axisymmetric Endwall Contouring in a Single Stage, Rotating Turbine
,”
ASME
Paper No. GT2009-59169. 10.1115/GT2009-59169
42.
Crawford
,
M. E.
,
2009
, “TEXSTAN (academic version),” University of Texas, Austin, TX.
43.
Pointwise, 2013, version 17.1r3, Pointwise, Inc., Fort Worth, TX.
44.
Marcum
,
D.
, and
Gaither
,
J.
,
1999
, “
Mixed Element Type Unstructured Grid Generation for Viscous Flow Applications
,”
AIAA
Paper No. 1999–3252. 10.2514/6.1999-3252
You do not currently have access to this content.