Abstract

Recent advances in experimental methods have allowed researchers to study nozzle guide vane (NGV) film cooling in the presence of combustor dilution ports and endwall films. The dilution injection creates nonuniformities in temperature, velocity, and turbulence, and an understanding of the vane film cooling performance is complicated by competing influences. In this study, dilution port temperature profiles have been measured in the absence of vane film cooling and compared to film effectiveness measurements in the presence of both films and dilution, illustrating the effects of the dilution port turbulence on film cooling performance. It is found that dilution port injection can create significant effectiveness benefits at the difficult-to-cool vane stagnation region due to the more turbulent hot mainstream enhancing the mixing of film coolant jets that have left the airfoil surface. Also explored are the implications of endwall film cooling for infrared (IR) vane surface temperature measurements. The reduced endwall temperatures reduce the thermal emissions from this surface, so reducing the amount of extraneous radiation reflected from the vane surface where measurements are being made. The results of a detailed calibration show that the maximum local film effectiveness measurement error could be up to 0.05 if this effect were to go unaccounted for.

References

1.
Holgate
,
N. E.
,
Ireland
,
P. T.
, and
Self
,
K. P.
,
2017
, “
Nozzle Guide Vane Film Cooling Effectiveness for Radial Showerheads With Restricted Cooling Hole Surface Angles
,”
ASME
Paper No. GT2017-64645.
2.
Mouzon
,
B. D.
,
Albert
,
J. E.
,
Terrell
,
E. J.
, and
Bogard
,
D. G.
,
2005
, “
Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge
,”
ASME
Paper No. GT2005-69002.
3.
Colban
,
W.
,
Gratton
,
A.
,
Thole
,
K. A.
, and
Haendler
,
M.
,
2006
, “
Heat Transfer and Film-Cooling Measurements on a Stator Vane With Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
128
(
1
), pp.
53
61
.
4.
Chandran
,
D.
, and
Prasad
,
B.
,
2015
, “
Conjugate Heat Transfer Study of Combined Impingement and Showerhead Film Cooling Near NGV Leading Edge
,”
Int. J. Rot. Mach.
,
2015
, p. 13.
5.
Radomsky
,
R. W.
, and
Thole
,
K. A.
,
2000
, “
High Free-Steam Turbulence Effects on Endwall Heat Transfer for a Gas Turbine Stator Vane
,”
ASME J. Turbomach.
,
122
(
4
), pp.
699
708
.
6.
Thomas
,
M.
,
Kirollos
,
B.
,
Jackson
,
D.
, and
Povey
,
T.
,
2013
, “
Experimental and CFD Studies of NGV Endwall Cooling
,”
ASME
Paper No. GT2013-95639.
7.
Mensch
,
A.
, and
Thole
,
K. A.
,
2016
, “
Overall Effectiveness and Flowfield Measurements for an Endwall With Nonaxisymmetric Contouring
,”
ASME J. Turbomach.
,
138
(
3
), p.
031007
.
8.
Ames
,
F. E.
,
1996
, “
Experimental Study of Vane Heat Transfer and Film Cooling at Elevated Levels of Turbulence
,” National Aeronautics and Space Administration Contractor, Cleveland, OH, Report No. 198525.
9.
Ou
,
S.
, and
Rivir
,
R. B.
,
2001
, “
Leading Edge Film Cooling Heat Transfer With High Free Stream Turbulence Using a Transient Liquid Crystal Image Method
,”
Int. J. Heat Fluid Flow
,
22
(
6
), pp.
614
623
.
10.
Funazaki
,
K.
,
Kawabata
,
H.
, and
Okita
,
Y.
,
2012
, “
Free-Stream Turbulence Effects on Leading Edge Film Cooling
,”
Int. J. Gas Turbine, Propul. Power Syst.
,
4
(
1
), pp. 43–50.http://www.gtsj.org/english/jgpp/v04n01tp06.pdf
11.
Schmidt
,
D. L.
, and
Bogard
,
D. G.
,
1996
, “
Effects of Free-Stream Turbulence and Surface Roughness on Film Cooling
,”
ASME
Paper No. 96-GT-462.
12.
Saumweber
,
C.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Free-Stream Turbulence Effects on Film Cooling With Shaped Holes
,”
ASME J. Turbomach.
,
125
(
1
), pp.
65
73
.
13.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
.
14.
Cresci
,
I.
,
2016
,
High Pressure Nozzle Guide Vane Cooling System Flow Characteristics
,
The University of Oxford
,
Oxford, UK
.
15.
Cresci
,
I.
,
Ireland
,
P. T.
,
Bacic
,
M.
,
Tibbott
,
I.
, and
Rawlinson
,
A.
,
2015
, “
Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment
,”
ASME
Paper No. GT2015-42307.
16.
Cresci
,
I.
,
Ireland
,
P. T.
,
Bacic
,
M.
,
Tibbott
,
I.
, and
Rawlinson
,
A.
,
2015
, “
Realistic Velocity and Turbulence Intensity Profiles at the Combustor-Turbine Interaction Plane in a Nozzle Guide Vane Test Facility
,”
European Turbomachinery Conference
, Madrid, Spain, Mar., Paper No. ETC2015-255.
17.
Cresci
,
I.
,
Ireland
,
P. T.
,
Bacic
,
M.
,
Tibbott
,
I.
, and
Rawlinson
,
A.
,
2015
, “
Realistic Velocity, Turbulence and Temperature Profiles at the Combustor-Turbine Interaction Plane in a Rig
,”
International Gas Turbine Congress
, Tokyo, Japan, Nov., p. WeAMB.5.
18.
Drost
,
U.
, and
Bo¨lcs
,
A.
,
1999
, “
Investigation of Detailed Film Cooling Effectiveness and Heat Transfer Distributions on a Gas Turbine Airfoil
,”
ASME J. Turbomach.
,
121
(
2
), pp.
233
242
.
19.
Pietrzyk
,
J. R.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1990
, “
Effects of Density Ratio on the Hydrodynamics of Film Cooling
,”
ASME J. Turbomach.
,
112
(
3
), pp. 437–443.
20.
Holgate
,
N. E.
,
Cresci
,
I.
,
Ireland
,
P. T.
, and
Rawlinson
,
A.
,
2017
, “
Prediction and Augmentation of Nozzle Guide Vane Film Cooling Hole Pressure Margin
,”
European Turbomachinery Conference
, Stockholm, Sweden, Paper No. ETC2017-128.
21.
AFNOR, 2003, “
Measurement of Fluid Flow by Means of pressure differential devices inserted in Circular-Cross Section Conduits Running Full, Part 2: Orifice plates
,” Association Française de Normalisation Group, Paris, France, Standard No. NF EN ISO 5167-2.
22.
Hoheisel
,
H.
,
Kiock
,
R.
,
Lichtfuss
,
H. J.
, and
Fottner
,
L.
,
1987
, “
Influence of Free-Stream Turbulence and Blade Pressure Gradient on Boundary Layer and Loss Behavior of Turbine Cascades
,”
ASME J. Turbomach.
,
109
(
2
), p.
210
.
23.
Cha
,
C. M.
,
Ireland
,
P. T.
,
Denman
,
P. A.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels Are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
You do not currently have access to this content.