Abstract

The present study focuses on the acoustics of a turbocharger centrifugal compressor from a spark-ignition internal combustion engine. Whoosh noise is typically the primary concern for this type of compressor, which is loosely characterized by a broadband sound elevation in the 4–13 kHz range. To identify the generation mechanism of broadband whoosh noise, the present study combines three approaches: three-dimensional (3D) computational fluid dynamics (CFD) predictions, experiments, and modal decomposition of 3D CFD results. After establishing the accuracy of predictions, flow structures and time-resolved pressures are closely examined in the vicinity of the main blade leading edge. This reveals the presence of rotating instabilities that may interact with the rotor blades to generate noise. An azimuthal modal decomposition is performed on the predicted pressure field to determine the number of cells and the frequency content of these rotating instabilities. The strength of the rotating instabilities and the frequency range in which noise is generated as a consequence of the rotor-rotating instability interaction correspond well with the qualitative trend of the whoosh noise that is measured several duct diameters upstream of the rotor blades. The variation of the whoosh frequency range between low and high rotational speeds is interpreted through this analysis. It is also found that the whoosh noise primarily propagates along the duct as acoustic azimuthal modes. Hence, the inlet duct diameter, which governs the cut-off frequency for multi-dimensional acoustic modes, determines the lower frequency bound of the broadband noise.

References

1.
Kameier
,
F.
, and
Neise
,
W.
,
1997
, “
Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines
,”
J. Sound Vib.
,
203
(
5
), pp.
833
853
.
2.
Raitor
,
T.
, and
Neise
,
W.
,
2008
, “
Sound Generation in Centrifugal Compressors
,”
J. Sound Vib.
,
314
(
3–5
), pp.
738
756
.
3.
Mailach
,
R.
,
Lehmann
,
I.
, and
Vogeler
,
K.
,
2001
, “
Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex
,”
ASME J. Turbomach.
,
123
(
3
), pp.
453
460
.
4.
März
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
5.
Pardowitz
,
B.
,
Tapken
,
U.
, and
Enghardt
,
L.
,
2012
, “
Time-Resolved Rotating Instability Waves in an Annular Cascade
,”
18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference)
,
Colorado Springs, CO
.
6.
Pardowitz
,
B.
,
Tapken
,
U.
,
Sorge
,
R.
,
Thamsen
,
P. U.
, and
Enghardt
,
L.
,
2014
, “
Rotating Instability in an Annular Cascade: Detailed Analysis of the Instationary Flow Phenomena
,”
ASME J. Turbomach.
,
136
(
6
), p.
061017
.
7.
Pardowitz
,
B.
,
Tapken
,
U.
,
Neuhaus
,
L.
, and
Enghardt
,
L.
,
2015
, “
Experiments on an Axial Fan Stage: Time-Resolved Analysis of Rotating Instability Modes
,”
ASME J. Eng. Gas Turbines Power
,
137
(
6
), p.
062505
.
8.
Eck
,
M.
,
Geist
,
S.
, and
Peitsch
,
D.
,
2017
, “
Physics of Prestall Propagating Disturbances in Axial Compressors and Their Potential as a Stall Indicator
,”
J. Appl. Sci.
,
7
(
3
), p.
285
.
9.
Teng
,
C.
, and
Homco
,
S.
,
2009
, “
Investigation of Compressor Whoosh Noise in Automotive Turbochargers
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
2
(
1
), pp.
1345
1351
.
10.
Karim
,
A.
,
Miazgowicz
,
K.
,
Lizotte
,
B.
, and
Zouani
,
A.
,
2013
, “
Computational Aero-Acoustics Simulation of Compressor Whoosh Noise in Automotive Turbochargers
,”
SAE Technical Paper 2013-01-1880
.
11.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Miazgowicz
,
K.
,
Karim
,
A.
, and
Host
,
R.
,
2015
, “
Effect of Aerodynamically Induced Pre-Swirl on Centrifugal Compressor Acoustics and Performance
,”
SAE Int. J. Passeng. Cars Mech. Syst.
,
8
(
3
), pp.
995
1002
.
12.
Figurella
,
N.
,
Dehmer
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
,
Wade
,
R.
,
Karim
,
A.
,
Keller
,
P.
, and
Shutty
,
J.
,
2014
, “
Effect of Inlet Guide Vanes on Centrifugal Compressor Acoustics and Performance
,”
Noise Control Eng. J.
,
62
(
4
), pp.
232
237
.
13.
Figurella
,
N.
,
Dehner
,
R.
,
Selamet
,
A.
,
Tallio
,
K.
,
Miazgowicz
,
K.
, and
Wade
,
R.
,
2014
, “
Noise at the Mid to High Flow Range of a Turbocharger Compressor
,”
Noise Control Eng. J.
,
62
(
5
), pp.
306
312
.
14.
Dehner
,
R.
,
Selamet
,
A.
,
Steiger
,
M.
,
Miazgowicz
,
K.
, and
Karim
,
A.
,
2017
, “
The Effect of Ported Shroud Recirculating Casing Treatment on Turbocharger Centrifugal Compressor Acoustics
,”
SAE Int. J. Engines
,
10
(
4
), pp.
2057
2066
.
15.
Dehner
,
R.
, and
Selamet
,
A.
,
2019
, “
Prediction of Broadband Noise in an Automotive Centrifugal Compressor with Three-Dimensional Computational Fluid Dynamics Detached Eddy Simulations
,” SAE Technical Paper 2019-01-1487.
16.
Ohio Supercomputer Center
,
2016
,
Owens Supercomputer
,
Columbus, OH
.
17.
Siemens
,
2018
, STAR-CCM+ (Version 12.06.010), Melville, NY.
18.
Dehner
,
R.
,
2016
, “
An Experimental and Computational Study of Surge in Turbocharger Compression Systems
,”
Ph.D. Dissertation
,
Department of Mechanical and Aerospace Engineering, The Ohio State University
,
Columbus
.
19.
Selamet
,
A.
,
2019
, CFD Animations, http://engine.osu.edu (Animations → 2019 → CFD).
20.
Dehner
,
R.
,
Selamet
,
A.
,
Banerjee
,
D.
,
Sriganesh
,
P.
,
Miazgowicz
,
K.
,
Karim
,
A.
,
Morelli
,
A.
,
Tierman
,
C.
,
Harris
,
T.
, and
Bleiziffer
,
M.
,
2019
, “
Case Study: An Experimental Noise Reduction Study of an Extended Flow Range Automotive Turbocharger Centrifugal Compressor
,”
Noise Control Eng. J.
,
67
(
2
), pp.
117
126
.
You do not currently have access to this content.