Abstract

Counter-rotating turbomachines have the potential to be high efficiency, high power density devices. Comparisons between conventional and counter-rotating turbomachines in the literature make multiple and often contradicting conclusions about their relative performance. By adopting appropriate non-dimensional parameters, based on relative blade speed, the design space of conventional machines can be extended to include those with counter-rotation. This allows engineers familiar with conventional turbomachinery to transfer their experience to counter-rotating machines. By matching appropriate non-dimensional parameters, the loss mechanisms directly affected by counter-rotation can be determined. A series of computational studies are performed to investigate the relative performance of conventional and counter-rotating turbines (CRTs) with the same non-dimensional design parameters. Each study targets a specific loss source, highlighting which phenomena are directly due to counter-rotation and which are solely due to blade design. The studies range from two-dimensional blade sections to three-dimensional finite radius stages. It is shown that, at hub-to-tip ratios (HTRs) approaching unity, with matched non-dimensional design parameters, the stage efficiency and work output are identical for both types of machines. However, a CRT in the study is shown to have an efficiency advantage over a conventional machine of up to 0.35 percentage points for a HTR of 0.65. This is due to differences in absolute velocity producing different spanwise blade designs.

References

1.
Hooker
,
S.
,
1991
,
Not Much of an Engineer, an Autobiography
,
The Crowood Press Ltd.
,
Marlborough
.
2.
Wintucky
,
W. T.
, and
Stewart
,
W. L.
,
1958
, “
Analysis of Two-Stage Counterrotating Turbine Efficiencies in Terms of Work and Speed Requirements
,” NACA Research Memorandum, NACA. RM E57L05.
3.
Cai
,
R.
,
Wu
,
W.
, and
Fang
,
G.
,
1990
, “
Basic Analysis of Counter-Rotating Turbines
,”
Gas Turbine and Aeroengine Congress and Exposition
,
ASME
, Paper No. 90-GT-108.
4.
Reaction Engines Ltd
.,
2018
, “
SABRE
,” Online, https://www.reactionengines.co.uk/sabre-engine/, Last Accessed July 2018.
5.
Paniagua
,
G.
,
Szokol
,
S.
,
Kato
,
H.
,
Manzini
,
G.
, and
Varvill
,
R.
,
2008
, “
Contrarotating Turbine Aerodesign for an Advanced Hypersonic Propulsion System
,”
J. Propul. Power
,
24
(
6
), pp.
1269
1277
.
6.
Paniagua
,
G.
,
Lavagnoli
,
S.
,
Verstraete
,
T.
,
Mahmoudi
,
W.
, and
Benamara
,
T.
,
2011
, “
Aero-Design of Transonic LH2 and LOX Contra Rotating Turbopumps in an Expander Rocket Engine
,”
Int. J. Numer. Methods Heat Fluid Flow
,
23
(
4
), pp.
575
587
.
7.
Pempie
,
P.
, and
Ruet
,
L.
,
2003
, “
Counter-Rotating Turbine Designed for Turbopump Rocket Engine
,”
Joint Propulsion Conference and Exhibit
,
AIAA/ASME/SAE/ASEE
, Paper No. AIAA 2003-4768.
8.
Alexiou
,
A.
,
Roumeliotis
,
I.
,
Aretakis
,
N.
,
Tsalavoutas
,
A.
, and
Mathioudakis
,
K.
,
2012
, “
Modelling Contra-Rotating Turbomachinery Components for Engine Performance Simulations: The Geared Turbofan With Contra-Rotating Core Case
,”
Turbo Expo 2012
,
ASME
, Paper No. GT2012-69433.
9.
Schimming
,
P.
,
2003
, “
Counter Rotating Fans—An Aircraft Propulsion for the Future?
,”
J. Thermal Sci.
,
12
(
2
), pp.
97
103
.
10.
Bellocq
,
P.
,
Garmendia
,
I.
,
Legrand
,
J.
, and
Sethi
,
V.
,
2016
, “
Preliminary Design and Performance of Counter Rotating Turbines for Open Rotors—Part I: 1-D Methodology
,”
Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, ASME, Paper No. GT2016-57918.
11.
Bellocq
,
P.
,
Garmendia
,
I.
,
Legrand
,
J.
, and
Sethi
,
V.
,
2016
, “
Preliminary Design and Performance of Counter Rotating Turbines for Open Rotors—Part II: 0-D Methodology and Case Study for a 160 PAX Aircraft
,”
Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
, ASME, Paper No. GT2016-57921.
12.
Murakami
,
T.
, and
Kanemoto
,
T.
,
2013
, “
Counter-Rotating Type Pump-Turbine Unit Cooperating With Wind Power Unit
,”
J. Thermal Sci.
,
22
(
1
), pp.
7
12
.
13.
Kanemoto
,
T.
,
Kasahara
,
R.
,
Honda
,
H.
,
Miyaji
,
T.
, and
Kim
,
J.
,
2013
, “
Counter-Rotating Type Pump-Turbine Unit Stabilizing Momentarily Fluctuating Power From Renewable Energy Sources
,”
International Mechanical Engineering Congress and Exposition
,
ASME
, Paper No. IMECE2013-66000.
14.
Zhao
,
W.
,
Xu
,
J.
, and
Wu
,
B.
,
2014
, “
Aerodynamic Design and Analysis of a Multistage Vaneless Counter-Rotating Turbine
,”
Turbo Expo 2014: Turbine Technical Conference and Exposition
,
ASME
, Paper No. GT2014-26335.
15.
Wei
,
S.
, and
Kun
,
Z.
,
2015
, “
Design for High MA Number Counter Rotating Turbine Blades
,”
Turbo Expo 2015: Turbine Technical Conference and Exposition
,
ASME
, Paper No. GT2015-43374.
16.
Zhou
,
K.
,
Liu
,
H.
,
Zou
,
Z.
, and
Wang
,
L.
,
2014
, “
Aerodynamic Design of Three-Stage Vaneless Counter-Rotating Turbine
,”
J. Aerosp. Power
,
29
(
7
), pp.
1667
1679
.
17.
Louis
,
J. F.
,
1985
, “
Axial Flow Contra-Rotating Turbines
,”
Gas Turbine Conference and Exhibit
,
ASME
, Paper No. 85-GT-218.
18.
Sharma
,
P. B.
, and
Adekoya
,
A.
,
1996
, “
A Review of Recent Research on Contra-Rotating Axial Flow Compressor Stage
,”
International Gas Turbine and Aeroengine Congress and Exposition
,
ASME
, Paper No. 96-GT-254.
19.
Sharma
,
P. B.
,
Jain
,
Y. P.
, and
Pundhir
,
D. S.
,
1988
, “
A Study of Some Factors Affecting the Performance of a Contra-Rotating Axial Compressor Stage
,”
Proc. Inst. Mech. Eng.
,
202
(
A1
), pp.
15
21
.
20.
Gao
,
L.
,
Li
,
X.
,
Xie
,
J.
, and
Liu
,
B.
,
2012
, “
The Effect of Speed Ratio on the First Rotating Stall Stage in Contra-Rotating Compressor
,”
Turbo Expo 2012
,
ASME
, Paper No. GT2012-68802.
21.
Kerrebrock
,
J. L.
,
Epstein
,
A. H.
,
Merchant
,
A. A.
,
Guenette
,
G. R.
,
Parker
,
D.
,
Onnee
,
J.
,
Neumayer
,
F.
,
Adamczyk
,
J. J.
, and
Shabbir
,
A.
,
2008
, “
Design and Test of an Aspirated Counter-Rotating Fan
,”
ASME J. Turbomach.
,
130
(
2
), p.
021004
.
22.
Smith
,
S. F.
,
1965
, “
A Simple Correlation of Turbine Efficiency
,”
J. R. Aeronaut. Soc.
,
69
(
655
), pp.
467
470
.
23.
Craig
,
H. R. M.
, and
Cox
,
H. J. A.
,
1971
, “
Performance Estimation of Axial Flow Turbines
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
407
424
.
24.
Denton
,
J. D.
,
2017
, “
Multall—An Open Source, Computational Fluid Dynamics Based, Turbomachinery Design System
,”
ASME J. Turbomach.
,
139
(
12
), p.
121001
.
25.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier–Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p.
021025
.
26.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
You do not currently have access to this content.