Abstract

The flow through a transonic compressor cascade is characterized by high unsteadiness and a high loss level. This results from the shock waves in the blade cascade and their interaction with the blade suction side boundary layer. In the case of a laminar shock wave boundary layer interaction, the loss level is higher due to the occurrence of a laminar separation bubble below the shock wave compared to the shock wave interaction with a turbulent boundary layer. In addition, the oscillation of the shock position in both cases influences the working range concerning the point of stall onset as well as leading to an unsteady interaction with the blade called buffeting. The reduction of losses and of unsteadiness in the shock wave oscillation, connected to a decrease of the blade buffeting effect, is the aim of the current investigation. Therefore, experimental investigations using a roughness patch as well as air jet vortex generators in order to control the transition in a transonic compressor cascade have been conducted at the transonic cascade wind tunnel of the German Aerospace Center (DLR) at Cologne. At an inflow Mach number of 1.21, a loss reduction for both transition control cases is achieved. In spite of a nearly uninfluenced fluctuation range of the passage shock wave compared to the reference cascade, the oscillation spectra of the transition control cases show a reduction of the shock movement amplitude at a frequency below 500 Hz and above 1 kHz. In the closing section of the paper, a detailed discussion on the reasons for the resulting flow behavior based on particle image velocimetry and high-speed shadowgraphy data is given. The resulting conclusion of the study is that the consideration of transition control at transonic compressor blades is very important in order to reduce losses and flow unsteadiness that directly influences blade buffeting and the numerical prediction quality of the stall onset.

References

1.
Ferri
,
A.
,
1938
, “
Untersuchungen und Versuche Im Überschallwindkanal zu Guidonia
,”
Jahrbuch 1938 der deutschen Luftfahrtforschung
,
1
, pp.
112
138
.
2.
Donaldson
,
C. D.
,
1944
, “
Effects of Interaction between normal Shock and Boundary Layer
,” Technical Report CB. No. 4A27, NACA.
3.
Liepmann
,
H. W.
,
1946
, “
The Interaction Between Boundary Layer and Shock Waves in Transonic Flow
,”
J. Aerospace Sci.
,
13
(
12
), pp.
623
638
.
4.
Allen
,
H. J.
,
Heaslet
,
M. A.
, and
Nitzberg
,
G. E.
,
1947
, “
The Interaction of Boundary Layer and Compression Shock and its Effect upon Airfoil Pressure Distribution
,”
Technical Report, NACA
.
5.
Ackeret
,
J.
,
Feldmann
,
F.
, and
Rott
,
N.
,
1947
, “
Investigation of Compression Shock and Boundary Layers in Gases Moving at High Speed
,”
Technical Memorandum 1113, NACA, January
.
6.
Fage
,
A.
, and
Sargent
,
R. F.
,
1947
, “
Shock Wave and Boundary Layer Phenomena Near a Flat Surface
,”
Proc. R. Soc. London
,
190
(
A
), pp.
1
20
. 10.1098/rspa.1947.0058
7.
Hilton
,
W. F.
, and
Fowler
,
R. G.
,
1947
, “
Photographs of Shock Wave Movement
,”
Reports and Memoranda 2692, Aeronautical Research Council, Great Britain
.
8.
Humphreys
,
M. D.
,
1951
, “
Pressure Pulsation on Rigid Airfoils at Transonic Speeds
,”
Research Memorandum RM L51I12, NACA, December
.
9.
Holder
,
D.
,
Pearcey
,
H. H.
, and
Gadd
,
G. E.
,
1955
, “
The Interaction Between Shock Waves and Boundary Layers
,”
With a Note on the Effects of the Interaction on the Performance of Supersonic Intakes by J. Seddon. Technical Report C.P. 180 (also A.R.C. 16526, in 1954), Aeronautical Research Council
.
10.
Todd
,
K. W.
,
1954
, “
An Experimental Study of Three-dimensional High-Speed Air Conditions in a Cascade of Axial-flow Compressor Blades
,”
Research and Memoranda R. & M. No. 2792 (also A.R.C. 12711, 12308), Aeronautical Research Council
.
11.
Chapman
,
D. R.
,
Kuehn
,
D. M.
, and
Larson
,
H. K.
,
1958
, “
Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition
,”
NACA Report 1356, NACA
.
12.
Pearcey
,
H. H.
,
1959
, “
Some Effects of Shock-induced Separation of Turbulent Boundary Layers in Transonic Flow past Aerofoils
,”
Technical Report, Aeronautical Research Council
.
13.
McCabe
,
A.
,
1966
, “
The Three-Dimensional Interaction of a Shock Wave with a Turbulent Boundary Layer
,”
Aeronautical Q.
,
17
(
3
), pp.
231
252
. 10.1017/S0001925900003851
14.
Mundell
,
A. R. G.
, and
Mabey
,
D. G.
,
1986
, “
Pressure Fluctuations Caused by Transonic Shock/Boundary-Layer Interaction
,”
Aeronautical J.
,
6
, pp.
274
81
.
15.
Lee
,
B. H. K.
,
1989
, “
Investigation of Flow Separation on a Supercritical Airfoil
,”
J. Air., AIAA
,
26
(
11
), pp.
1032
1037
. 10.2514/3.45876
16.
Epstein
,
A. H.
,
Kerrebock
,
J. L.
, and
Thomkins
,
W. T.
,
1979
, “
Shock Structure in Transsonic Compressor Rotors
,”
AIA J.
,
17
, pp.
375
379
. 10.2514/3.61134
17.
Strazisar
,
A. J.
,
1984
, “
Investigation of Flow Phenomena in a Transonic Fan Rotor Using Laser Anemometry
,”
ASME Turbo Expo
,
Toronto, Ontario, Canada
,
Sept. 30–Oct. 4
,
Paper No. 84-GT-199
.
18.
Hah
,
C.
, and
Reid
,
L.
,
1992
, “
A Viscous Flow Study of Shock-Boundary Layer Interaction, Radial Transport, and Wake Development in a Transonic Compressor
,”
J. Turbomachinery, ASME
,
114
, pp.
538
547
. 10.1115/1.2929177
19.
Hergt
,
A.
,
Klinner
,
J.
,
Wellner
,
J.
,
Willert
,
C.
,
Grund
,
S.
,
Steinert
,
W.
, and
Beversdorff
,
M.
,
2018
, “
The Present Challenge of Transonic Compressor Blade Design
,”
ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
,
GT2018-75528
.
20.
Kistler
,
A. L.
,
1964
, “
Fluctuating Wall Pressure Under a Separated Supersonic Flow
,”
J. Acoust. Soc. Am.
,
36
(
3
), pp.
543
550
. 10.1121/1.1918998
21.
Beresh
,
S. J.
,
Clemens
,
N. T.
,
Dolling
,
D. S.
, and
Comninos
,
M.
,
1997
, “
Investigation of the Causes of Large-Scale Unsteadiness of Shock-Induced Separated Flow Using Planar Laser Imaging
,”
35th AIAA Aerospace and Science Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
,
AIAA Paper 97-0064
.
22.
Beresh
,
S. J.
,
Clemens
,
N. T.
, and
Dolling
,
D. S.
,
1999
, “
The Relationship Between Upstream Turbulent Boundary Layer Velocity Fluctuations and Separation Shock Unsteadiness
,”
No. AIAA Paper 99-0295 in 37th AIAA Aerospace Sceinces Meeting and Exhibit
,
Reno, NV
,
Jan. 11–14
.
23.
Roos
,
F. W.
,
1975
, “
Surface Pressure and Wake Flow Fluctuations in a Supercritical Airfoil Flowfield
,”
13th Aerospace Sciences Meeting, AIAA
,
Paper No. AIAA Paper 75-66
.
24.
Thomas
,
F. O.
,
Putnam
,
C. M.
, and
Chu
,
H. C.
,
1995
, “
On the Mechanism of Unsteady ShockWave/Turbulent Boundary Layer Interactions
,”
Exp. Fluids
,
18
(
1/2
), pp.
69
81
.
25.
Dussauge
,
J.-P.
,
Dupont
,
P.
, and
Debieve
,
J.-F.
,
2006
, “
Unsteadiness in Shock Wave Boundary Layer Ininteractionsw Separation
,”
J. Aeros. Sci. Technol.
,
10
, pp.
85
91
. 10.1016/j.ast.2005.09.006
26.
Dussauge
,
J.-P.
, and
Piponniau
,
S.
,
2008
, “
Shock/Boundary-Layer Interactions: Possible Sources of Unsteadiness
,”
J. Fluids Struct.
,
24
, pp.
1166
1175
. 10.1016/j.jfluidstructs.2008.06.003
27.
Hartmann
,
A.
,
Klaas
,
M.
, and
Schröder
,
W.
,
2012
, “
Time-Resolved Stereo PIV Measurements of Shock-Boundary Layer Interaction on a Supercritical Airfoil
,”
Exp. Fluids
,
52
(
3
), pp.
591
604
. 10.1007/s00348-011-1074-6
28.
Lee
,
B. H. K.
,
2001
, “
Self-sustained Shock Oscillations on Airfoils At Transonic Speeds
,”
Progress Aeros. Sci.
,
37
(
2
), pp.
147
196
. 10.1016/S0376-0421(01)00003-3
29.
Hartmann
,
A.
,
Feldhusen
,
A.
, and
Schröder
,
W.
,
2013
, “
On the Interaction of Shock Waves and Sound Waves in Transonic Buffet Flow
,”
Phys. Fluids
,
25
, p.
026101
. 10.1063/1.4791603
30.
Hergt
,
A.
,
Beversdorff
,
M.
,
Giebmanns
,
A.
, and
Schnell
,
R.
,
2015
, “
The Effect of An Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade
,”
ASME J. Turbomach.
,
137
, p.
021006
.
31.
Giannelis
,
N. F.
,
Vio
,
G. A.
, and
Levinski
,
O.
,
2017
, “
A Review of Recent Developments in the Understanding of Transonic Shock Buffet
,”
Progress Aeros. Sci.
,
92
, pp.
39
84
. 10.1016/j.paerosci.2017.05.004
32.
Schreiber
,
H. A.
,
Starken
,
H.
, and
Steinert
,
W.
,
1993
, “
Transonic and Supersonic Cascades
,”
AGARDOgraph - Adv. Methods Cascade Testing
,
AGARD AG 328
, pp.
35
59
.
33.
Steinert
,
W.
,
Fuchs
,
R.
, and
Starken
,
H.
,
1992
, “
Inlet Flow Angle Determination of Transonic Compressor Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
487
493
. 10.1115/1.2929169
34.
Holden
,
H. A.
, and
Babinsky
,
H.
,
2005
, “
Separated Shock-Boundary-Layer Interaction Control Using Streamwise Slots
,”
J. Aircraft
,
42
(
1
), pp.
166
171
. 10.2514/1.4687
35.
McCormick
,
D. C.
,
1993
, “
Shock/Boundary-Layer Interaction Control with Vortex Generators and Passive Cavity
,”
AIAA J.
,
31
(
1
), pp.
91
96
. 10.2514/3.11323
36.
Doerffer
,
P.
, and
Bohning
,
R.
,
2003
, “
Shock Wave-Boundary Layer Interaction Control by Wall Ventilation
,”
Aeros. Sci. Technol.
,
7
, pp.
171
179
. 10.1016/S1270-9638(02)00009-3
37.
Krogmann
,
P.
,
Stanewsky
,
E.
, and
Thiede
,
P.
,
1985
, “
Effects of Suction on Shock/Boundary-Layer Interaction and Shock-Induced Separation
,”
J. Air.
,
22
(
1
), pp.
37
42
. 10.2514/3.45077
38.
Lachmann
,
G. V.
ed.,
1961
,
Boundary Layer and Flow Control
, Vols.
1 and 2
,
Pergamon Press
,
New York
.
39.
Pearcey
,
H. H.
,
1961
,
Shock-Induced Seperation and Its Prevention in Boundary Layer and Flow Control, Its Principles and Application, Volume 2
,
Pergamon Press, Oxford
.
40.
Titchener
,
N.
, and
Babinsky
,
H.
,
2015
, “
A Review of the Use of Vortex Generators for Mitigating Shock-Induced Separation
,”
Shock Waves
,
25
, pp.
473
494
. 10.1007/s00193-015-0551-x
41.
Hergt
,
A.
,
Meyer
,
R.
, and
Engel
,
K.
,
2013
, “
Effects of Vortex Generator Application on the Performance of a Compressor Cascade
,”
ASME J. Turbomach.
,
135
, p.
021027
. 10.1115/1.4006605
42.
Johnston
,
J. P.
, and
Nishi
,
M.
,
1990
, “
Vortex Generator Jets - Means for Flow Separation Control
,”
AIA J.
,
28
(
6
), pp.
989
994
. 10.2514/3.25155
43.
Compton
,
D. A.
, and
Johnston
,
J. P.
,
1992
, “
Streamwise Vortex Production by Pitched and Skewed Jets in a Turbulent Boundary Layer
,”
AIAA J.
,
30
(
3
), pp.
640
647
. 10.2514/3.10967
44.
Johnston
,
J. P.
,
1999
, “
Pitched and Skewed Vortex Generator Jets for Control of Turbulent Boundary Layer Separation: A Review
,”
No. FEDSM99-6917 in 3rd ASME/JSME Joint Fluids Engineering Conference
,
San Francisco, CA
,
July 18–23
.
45.
Barberopoulos
,
A. A.
, and
Garry
,
K. P.
,
1998
, “
The Effect of Skewing on the Vorticity Produced by An Airjet Vortex Generator
,”
Aeronautical J.
,
102
(
1013
), pp.
171
177
.
46.
Piotrowicz
,
M.
,
Flaszynski
,
P.
, and
Doerffer
,
P.
,
2014
, “
Investigation of Shock Wave Boundary Layer Interaction on Suction Side of Compressor Profile
,”
11th Fluid Mechanics Conference, Journal of Physics: Conference Series 530
, p.
012068
47.
Flaszynski
,
P.
,
Doerffer
,
P.
,
Szwaba
,
R.
,
Kaczynski
,
P.
, and
Piotrowicz
,
M.
,
2015
, “
Shock Wave Boundary Layer Interaction on Suction Side of Compressor Profile in Single Passage Test Section
,”
J. Thermal Sci.
,
24
(
6
), pp.
510
515
. 10.1007/s11630-015-0816-9
48.
Piotrowicz
,
M.
, and
Flaszynski
,
P.
,
2016
, “
Numerical Investigation of Shock Wave Interaction with Laminar Boundary Layer on Compressor Profile
,”
12th Fluid Mechanics Conference, Journal of Physics: Conference Series 760
, p.
012023
.
49.
Szwaba
,
R.
,
2011
, “
Comparison of the Influence of Different Air-Jet Vortex Generators on the Separation Region
,”
Aeros. Sci. Technol.
,
15
, pp.
45
52
. 10.1016/j.ast.2010.06.001
50.
Szwaba
,
R.
,
2013
, “
Influence of Air-Jet Vortex Generator Diameter on Separation Region
,”
J. Thermal Sci.
,
22
(
4
), pp.
294
303
. 10.1007/s11630-013-0627-9
51.
Tejero
,
F.
,
Doerffer
,
P.
, and
Szulc
,
O.
,
2015
, “
Shock Wave Induced Flow Separation Control by Air-Jet and Rod Vortex Generators
,”
Task Q.
,
19
(
2
), pp.
167
180
.
52.
Russo
,
D. G. P.
,
1988
,
2.3.2 Techniques for Boundary Layer Tripping and Control
. No. AR-224. AGARD.
53.
Young
,
A. D.
,
1950
, “
The Drag Effects of Roughness At High Sub-Critical Speeds
,”
Aeronautical J.
,
54
(
476
), pp.
534
540
. 10.1017/S0368393100116104
54.
Turner
,
R. C.
, and
Hughes
,
H. P.
,
1956
, “
Tests on Rough Surfaced Compressor Blading
,”
A.R.C. Technical Report C.P. No. 306 (17933), Aeronautical Research Council
.
55.
Schäffler
,
A.
,
1980
, “
Experimental and Analytical Investigation of the Effects of Reynolds Number and Blade Surface Roughness on Multistage Axial Flow Compressors
,”
ASME J. Eng. Power
,
102
, pp.
5
13
. 10.1115/1.3230232
56.
Schimming
,
P.
,
1976
, “
Experimental Investigation of Supersonic Inflow of Compressor Cascade by the Laser-2-Focus Method
,”
Symposium of Measuring Techniques in Transonic and Supersonic Cascade Flow
.
57.
Schodl
,
R.
,
1980
, “
A Laser-Two-Focus (L2F) Velocimeter for Automatic Flow Vector Measurements in the Rotating Components of Turbomachines
,”
ASME J. Fluids Eng.
,
102
(
4
), pp.
412
419
. 10.1115/1.3240713
58.
Schodl
,
R.
,
1989
, “
Laser Two Focus Techniques.
VKI-Lecture Series 1989-05 Measurement Techniques in Aerodynamics
.
59.
Klinner
,
J.
,
Hergt
,
A.
,
Beversdorff
,
M.
, and
Willert
,
C.
,
2012
, “
Visualization and PIV Measurements of the Transonic Flow Around the Leading Edge of An Eroded Fan Airfoil
,”
16th International Symposium on Applications of Laser Techniques to Fluid Mechanics
.
60.
Klinner
,
J.
,
Hergt
,
A.
, and
Willert
,
C.
,
2014
, “
Experimental Investigation of the Transonic Flow Around the Leading Edge of An Eroded Fan Airfoil
,”
Exp. Fluids
,
55
(
9
), p.
1800
. 10.1007/s00348-014-1800-y
61.
Klinner
,
J.
,
Hergt
,
A.
,
Grund
,
S.
, and
Willert
,
C.
,
2018
, “
Investigation of Shock-induced Flow Separation Over a Transonic Compressor Blade by Conditionally Averaged PIV and High-speed Shadowgraphs
,”
19th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics
.
62.
Schreiber
,
H. A.
,
1976
, “
Comparison Between Flows in Cascades and Rotors in the Transonic Range
,”
Lecture Series in Transonic Blade-to-Blade Flows in Axial Turbomachinery, von Karman Institute for Fluid Dynamics
.
63.
Schreiber
,
H. A.
, and
Starken
,
H.
,
1981
, “
On the Definition of the Axial Velocity Density Ratio in Theoretical and Experimental Cascade Investigation
,”
Symposium on Measuring Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines
.
64.
Willert
,
C.
,
Mitchell
,
D.
, and
Soria
,
J.
,
2012
, “
An Assessment of High-Power Light-Emitting Diodes for High Frame Rate Schlieren Imaging
,”
Exp. Fluids
,
53
, pp.
413
421
. 10.1007/s00348-012-1297-1
65.
Merzkirch
,
W.
,
1971
, “
Der Ablösestoss Bei Der Expansion Einer Überschallgrenzschicht
,”
Z. Flugwissenschaften
,
19
, pp.
1
12
. Jahrgang, Heft 1.
66.
Babinsky
,
H.
, and
Harvey
,
J. K.
,
2011
,
Shock Wave-Boundary-Layer Interactions
,
Cambridge University Press
,
Cambridge
.
You do not currently have access to this content.