Abstract

Film cooling is a common technique to manage turbine vane and blade thermal environment. Optimizing its cooling efficiency is furthermore an active research topic which goes in hand with a strong knowledge of the flow associated with a cooling hole. The following paper aims at developing deeper understanding of the flow physics associated with a standard cooling hole and helping guide future cooling optimization strategies. For this purpose, large eddy simulations (LESs) of the 7-7-7 fan-shaped cooling hole are performed and the flow inside the cooling hole is studied and discussed. Use of mathematical techniques such as the fast Fourier transforms (FFTs) and dynamic mode decomposition (DMD) is done to quantitatively access the flow modal structure inside the hole based on the LES unsteady predictions. Using these techniques, distinct vortex features inside the cooling hole are captured. These features mainly coincide with the roll-up of the internal shear layer formed at the interface of the separation region at the hole-inlet. The topology of these vortex features is discussed in detail and it is also shown how the expansion of the cross section in case of shaped holes aids in breaking down these vortices. Indeed upon escaping, these large-scale features are known to not be always beneficial to film cooling effectiveness.

References

1.
Goldstein
,
R. J.
,
1971
, “Film Cooling,”
Advances in Heat Transfer
, Vol.
7
,
Elsevier
, pp.
321
379
.
2.
Han
,
J. C.
, and
Ekkad
,
S.
,
2001
, “
Recent Development in Turbine Blade Film Cooling
,”
Int. J. Rotat. Mach.
,
7
(
1
), pp.
21
40
. 10.1155/S1023621X01000033
3.
Han
,
J. C.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotat. Mach.
,
10
(
6
), pp.
443
457
. 10.1155/S1023621X04000442
4.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
1997
, “
A Detailed Analysis of Film Cooling Physics: Part I: Streamwise Injection
,”
ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition
,
Orlando, FL
,
June 2–5
, pp.
1
14
.
5.
McGovern
,
K. T.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part II Compound-Angle Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(
1
), pp.
113
121
. 10.1115/1.555434
6.
Kusterer
,
K.
,
Tekin
,
N.
,
Reiners
,
F.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Highest-Efficient Film Cooling by Improved Nekomimi Film Cooling Holes: Part 1—Ambient Air Flow Conditions
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2013-95027.
7.
Kusterer
,
K.
,
Tekin
,
N.
,
Reiners
,
F.
,
Bohn
,
D.
,
Sugimoto
,
T.
,
Tanaka
,
R.
, and
Kazari
,
M.
,
2013
, “
Highest-Efficient Film Cooling by Improved Nekomimi Film Cooling Holes: Part 2—Hot Gas Flow Conditions
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
American Society of Mechanical Engineers
, Paper No. GT2013-95042.
8.
Heidmann
,
J. D.
, and
Ekkad
,
S.
,
2007
, “
A Novel Anti-Vortex Turbine Film Cooling Hole Concept
,”
ASME Turbo Expo 2007: Power for Land, Sea, and Air
,
Montreal, Canada
,
May 14–17
, pp.
487
496
.
9.
Kusterer
,
K.
,
Bohn
,
D.
,
Sugimoto
,
T.
, and
Tanaka
,
R.
,
2007
, “
Double-Jet Ejection of Cooling Air for Improved Film Cooling
,”
ASME J. Turbomach.
,
129
(
4
), pp.
809
815
. 10.1115/1.2720508
10.
Saumweber
,
C.
, and
Schulz
,
A.
,
2012
, “
Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes
,”
ASME J. Turbomach.
,
134
, pp.
905
919
.
11.
Sargison
,
J.
,
Guo
,
S.
,
Oldfield
,
M.
,
Lock
,
G.
, and
Rawlinson
,
A.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 1: Low-Speed Flat-Plate Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
453
460
. 10.1115/1.1459735
12.
Sargison
,
J.
,
Guo
,
S.
,
Oldfield
,
M.
,
Lock
,
G.
, and
Rawlinson
,
A.
,
2002
, “
A Converging Slot-Hole Film-Cooling Geometry—Part 2: Transonic Nozzle Guide Vane Heat Transfer and Loss
,”
ASME J. Turbomach.
,
124
(
3
), pp.
461
471
. 10.1115/1.1459736
13.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
1997
, “
A Detailed Analysis of Film Cooling Physics, Part III : Streamwise Injection With Shaped Holes
,” International Gas Turbine & Aeroengine Congress & Exhibition, Paper No. 97-GT-271.
14.
Chen
,
P. H.
,
Ding
,
P. P.
,
Hung
,
M. S.
, and
Shih
,
P. C.
,
1999
, “
Film Cooling Over a Concave Surface Through a Row of Expanded Holes
,”
ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition
,
Indianapolis, IN
,
June 7–10
, American Society of Mechanical Engineers, p. V003T01A007.
15.
Fric
,
T. F.
, and
Roshko
,
A.
,
1994
, “
Vortical Structure in the Wake of a Transverse Jet
,”
J. Fluid. Mech.
,
279
, pp.
1
47
. 10.1017/S0022112094003800
16.
Kelso
,
R. M.
, and
Smits
,
A. J.
,
1995
, “
Horseshoe Vortex Systems Resulting From the Interaction Between a Boundary Layer and a Transverse Jet
,”
Phys. Fluids
,
7
(
1
), pp.
153
158
. 10.1063/1.868736
17.
Kelso
,
R. M.
,
Lim
,
T. L.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid. Mech.
,
306
, pp.
111
144
. 10.1017/S0022112096001255
18.
Kohli
,
A.
, and
Thole
,
K. A.
,
1997
, “
A CFD Investigation on the Effects of Entrance Crossflow Directions to Film-Cooling Holes
,”
Am. Soc. Mech. Eng. Heat Transfer Div. (Publ.) HTD
,
350
, pp.
223
232
.
19.
Saumweber
,
C.
, and
Schulz
,
A.
,
2008
, “
Comparison the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes With Special Emphasis on the Effect of Internal Coolant Cross-Flow
,”
ASME Turbo Expo 2008: Power for Land, Sea, and Air
,
Berlin, Germany
,
June 9–13
, American Society of Mechanical Engineers, pp.
893
903
.
20.
Thole
,
K.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Flowfield Measurements for Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
2
), pp.
327–336
. 10.1115/1.2841410
21.
Tyagi
,
M.
, and
Acharya
,
S.
,
2003
, “
Large Eddy Simulation of Film Cooling Flow From an Inclined Cylindrical Jet
,”
ASME J. Turbomach.
,
125
(
4
), pp.
734–742
. 10.1115/1.1625397
22.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-Eddy Simulation of an Inclined Round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
. 10.1016/j.ijheatmasstransfer.2013.10.027
23.
Zhong
,
L.
,
Zhou
,
C.
, and
Chen
,
S.
,
2016
, “
Large Eddy Simulation of Inclined Jet in Cross Flow With Cylindrical and Fan-Shaped Holes
,” ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Paper No. GT2016-56840.
24.
Haven
,
B. A.
,
1996
, “
The Effect of Hole Geometry on the Near Field Character of Crossflow Jets
,” Technical Report, Air Force Inst of Tech Wright-Patterson AFB, OH.
25.
Haven
,
B. A.
,
Yamagata
,
D. K.
,
Kurosaka
,
M.
,
Yamawaki
,
S.
, and
Maya
,
T.
,
1997
, “
Anti-Kidney Pair of Vortices in Shaped Holes and Their Influence on Film Cooling Effectiveness
,”
International Gas Turbine & Aeroengine Congress & Exhibition
,
Orlando, FL
,
June 2–5
, pp.
1
8
.
26.
Schmidt
,
D. L.
,
Sen
,
B.
, and
Bogard
,
D. G.
,
1994
, “
Film Cooling With Compound Angle Holes: Adiabatic Effectiveness
,”
ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition
,
The Hague, Netherlands
,
June 13–16
,
p. V004T09A049
.
27.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
. 10.1115/1.2841752
28.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Düsseldorf, Germany
,
June 16–20
, American Society of Mechanical Engineers, p. V05BT13A036.
29.
Schroeder
,
R. P.
,
2015
,
“Influence of In-hole Roughness and High Freestream Turbulence on Film Cooling From a Shaped Hole,” Dissertation in Mechanical Engineering, PhD
,
The Pennsylvania State University
,
State College, PA
.
30.
Schonfeld
,
T.
, and
Rudgyard
,
M.
,
1999
, “
Steady and Unsteady Flow Simulations Using the Hybrid Flow Solver AVBP
,”
AIAA J.
,
37
(
11
), pp.
1378
1385
. 10.2514/2.636
31.
Quartapelle
,
L.
, and
Selmin
,
V.
,
1993
, “
High-Order Taylor-Galerkin Methods for Nonlinear Multidimensional Problems
,”
Finite Elements Fluids
,
76
(
90
), p.
46
.
32.
Lamarque
,
N.
,
2007
,
“Schemas numériques et conditions limites pour la simulation aux grandes échelles de la combustion diphasique dans les foyers d’hélicoptère.”. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse
.
33.
Donea
,
J.
, and
Huerta
,
A.
,
2003
,
Finite Element Methods for Flow Problems
,
John Wiley & Sons
,
West Sussex, UK
.
34.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Large-Eddy Simulation of a Bi-periodic Turbulent Flow With Effusion
,”
J. Fluid Mech.
,
598
, pp.
27
65
. 10.1017/S0022112007009664
35.
Dauptain
,
A.
, and
Cuenot
,
B.
,
2010
, “
Large Eddy Simulation of Stable Supersonic Jet Impinging on Flat Plate
,”
AIAA J.
,
48
(
10
), pp.
2325
2338
. 10.2514/1.J050362
36.
Duchaine
,
F.
,
Maheu
,
N.
,
Moureau
,
V.
,
Balarac
,
G.
, and
Moreau
,
S.
,
2014
, “
Large-Eddy Simulation and Conjugate Heat Transfer Around a Low-Mach Turbine Blade
,”
ASME J. Turbomach.
,
136
(
5
), p.
051015
. 10.1115/1.4025165
37.
Ducros
,
F.
, and
Nicoud
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbulence Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
38.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Monthly Weather Rev.
,
91
(
3
), pp.
99
164
. 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
39.
Gicquel
,
L. Y.
,
Gourdain
,
N.
,
Boussuge
,
J. -F.
,
Deniau
,
H.
,
Staffelbach
,
G.
,
Wolf
,
P.
, and
Poinsot
,
T.
,
2011
, “
High Performance Parallel Computing of Flows in Complex Geometries
,”
Comptes Rendus Mecanique
,
339
(
2–3
), pp.
104
124
. 10.1016/j.crme.2010.11.006
40.
Gicquel
,
L. Y.
,
Staffelbach
,
G.
, and
Poinsot
,
T.
,
2012
, “
Large Eddy Simulations of Gaseous Flames in Gas Turbine Combustion Chambers
,”
Prog. Energy Combust. Sci.
,
38
(
6
), pp.
782
817
. 10.1016/j.pecs.2012.04.004
41.
Papadogiannis
,
D.
,
2015
,
“Coupled Large Eddy Simulations of Combustion Chamber-Turbine Interactions,” PhD thesis, Institut National Polytechnique de Toulouse, Toulouse
.
42.
Fransen
,
R.
,
2013
, Les Based Aerothermal Modeling of Turbine Blade Cooling Systems,”. PhD thesis,
Institut National Polytechnique de Toulouse
,
Toulouse
.
43.
Koupper
,
C.
,
2015
, “Unsteady Multi-Component Simulations Dedicated to the Impact of the Combustion Chamber on the Turbine of Aeronautical Gas Turbines,” PhD thesis,
Institut National Polytechnique de Toulouse
,
Toulouse
.
44.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film-Cooling Holes
,”
ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition
,
American Society of Mechanical Engineers
, Paper No. 98-GT-402.
45.
Liang
,
Y. C.
,
Lee
,
H. P.
,
Lim
,
S. P.
,
Lin
,
W. Z.
,
Lee
,
K. H.
, and
Wu
,
C. G.
,
2002
, “
Proper Orthogonal Decomposition and Its Applications—Part I: Theory
,”
J. Sound Vib.
,
252
(
3
), pp.
527
544
. 10.1006/jsvi.2001.4041
46.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK.
.
47.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
. 10.1017/S0022112010001217
48.
Tu
,
J. H.
,
Rowley
,
C. W.
,
Luchtenburg
,
D. M.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2013
, “
On Dynamic Mode Decomposition: Theory and Applications
,”
J. Comput. Dyn.
,
1
(
2
), pp.
391
421
. 10.3934/jcd.2014.1.391
You do not currently have access to this content.