Abstract

One-dimensional laterally averaged adiabatic film cooling effectiveness η¯lat-based correlations have been widely employed in the cooling design of the modern gas turbine and aero-engine; however, the flow field of the discrete film cooling is fully three dimensional, and thus, the cooling effectiveness distribution on the solid surface is two dimensional. Accurate prediction of the cooling effectiveness distribution in the lateral direction would help to optimize the film cooling design, but few paid attention to this issue in the literature. In this study, a simple yet accurate scalar diffusion equation based model is proposed to extend the one-dimensional correlation into two dimensional. The model is proved to be accurate and efficient. According to the accuracy analysis, the R2 value is larger than 0.95 for the two-dimensional prediction and over 0.93 along the centerline. With given input parameters, the calculation cost for solving a certain case is in the magnitude of 1 × 10−3s in time using the space-marching method. There is only the effective diffusion coefficient left to be modeled in the control equation. It represents the balance between the diffusion and the passive transportation by the main flow. Analyses conducted within the typical experimental range show that κ~eff is only dependent on the velocity ratio and the main-flow turbulence.

References

1.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power.
,
22
(
2
), pp.
249
270
. 10.2514/1.18034
2.
Goldstein
,
R.
,
Eckert
,
E.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three-Dimensional Film Cooling
,”
Int. J. Heat. Mass. Transfer.
,
17
(
5
), pp.
595
607
. 10.1016/0017-9310(74)90007-6
3.
Foster
,
N. W.
, and
Lampard
,
D.
,
1975
, “
Effects of Density and Velocity Ratio on Discrete Hole Film Cooling
,”
AIAA J.
,
13
(
8
), pp.
1112
1114
. 10.2514/3.6960
4.
Zhou
,
W.
,
Johnson
,
B.
, and
Hu
,
H.
,
2017
, “
Effects of Flow Compressibility and Density Ratio on Film Cooling Performance
,”
J. Propul. Power.
,
33
(
4
), pp.
964
974
. 10.2514/1.B36275
5.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091001
. 10.1115/1.4032736
6.
Liu
,
C. L.
,
Liu
,
J. L.
,
Zhu
,
H. R.
,
Wu
,
A. S.
,
He
,
Y. H.
, and
Zhou
,
Z. X.
,
2015
, “
Film Cooling Sensitivity of Laidback Fanshape Holes to Variations in Exit Configuration and Mainstream Turbulence Intensity
,”
Int. J. Heat. Mass. Transfer.
,
89
, pp.
1141
1154
. 10.1016/j.ijheatmasstransfer.2015.06.019
7.
Chen
,
Z.
,
Zhang
,
Z.
,
Li
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Vortex Dynamics Based Analysis of Internal Crossflow Effect on Film Cooling Performance
,”
Int. J. Heat. Mass. Transfer.
,
145
, p.
118757
. 10.1016/j.ijheatmasstransfer.2019.118757
8.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition
,
Dusseldorf, Germany, June 16–20, American Society of Mechanical Engineers
.
9.
Zhang
,
H.
,
Li
,
Y.
,
Chen
,
Z.
,
Su
,
X.
, and
Yuan
,
X.
,
2019
, “
Multi-Fidelity Model Based Optimization of Shaped Film Cooling Hole and Experimental Validation
,”
Int. J. Heat. Mass. Transfer.
,
132
, pp.
118
129
. 10.1016/j.ijheatmasstransfer.2018.11.156
10.
An
,
B.
,
Liu
,
J.
, and
Zhou
,
S.
,
2017
, “
Geometrical Parameter Effects on Film Cooling Effectiveness of Rectangular Diffusion Holes
,”
ASME J. Turbomach.
,
139
(
8
), p.
081010
. 10.1115/1.4036007
11.
Park
,
S.
,
Chung
,
H.
,
Choi
,
S. M.
,
Kim
,
S. H.
, and
Cho
,
H. H.
,
2015
, “
Design of Sister Hole Arrangements to Reduce Kidney Vortex for Film Cooling Enhancement
,”
J. Mech. Sci. Technol.
,
31
(
8
), pp.
3981
3992
. 10.1007/s12206-017-0745-5
12.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
ASME Turbo Expo 2008: Power for Land, Sea and Air
,
Berlin, Germany, June 9–13, American Society of Mechanical Engineers
.
13.
Bodart
,
J.
,
Coletti
,
F.
,
Bermejo-Moreno
,
I.
, and
Eaton
,
J.
,
2013
, “
High-Fidelity Simulation of a Turbulent Inclined Jet in a Crossflow
,”
Center Turbulence Res. Ann. Res. Briefs
,
19
, pp.
263
275
.
14.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
686
698
. 10.1115/1.1504443
15.
Baldauf
,
S.
,
Scheurlen
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2002
, “
Heat Flux Reduction From Film Cooling and Correlation of Heapt Transfer Coefficients From Thermographic Measurements at Enginelike Conditions
,”
ASME J. Turbomach.
,
124
(
4
), pp.
699
709
. 10.1115/1.1505848
16.
Bunker
,
R. S.
,
2006
, “Turbine Cooling Design Analysis,”
Gas Turbine Handbook
,
Sec. 4.2.1
,
Department of Energy
,
Washington, DC
, pp.
296
308
.
17.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Bogard
,
D.
,
2011
, “
A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface
,”
ASME J. Turbomach.
,
133
(
1
), p.
011002
. 10.1115/1.4002064
18.
Takeishi
,
K.
,
Komiyama
,
M.
, and
Oda
,
Y.
,
2014
, “
Quantitative Measuring Methods Applied for the Mixing Phenomena of Film Cooling
,”
Heat Transfer XIII
,
83
, pp.
491
503
. 10.2495/HT140421
19.
Li
,
W.
,
Shi
,
W.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2017
, “
On the Flow Structures and Adiabatic Film Effectiveness for Simple and Compound Angle Hole With Varied Length-to-Diameter Ratio by Large Eddy Simulation and Pressure-Sensitive Paint Techniques
,”
ASME J. Heat. Transfer.
,
139
(
12
), p.
122201
. 10.1115/1.4037085
20.
Ramsey
,
J.
,
Goldstein
,
R.
, and
Eckert
,
E.
,
1970
, “
A Model for Analysis of the Temperature Distribution With Injection of a Heated Jet Into an Isothermal Flow
,”
International Heat Transfer Conference Digital Library
,
Paris, France
,
Aug. 31–Sept. 5
, pp.
1
11
.
21.
Ingram
,
P. T.
, and
Yavuzkurt
,
S.
,
2012
, “
Calculation of 3-d Temperature Distribution in Film-Cooled Flat Plates Using 2-d Empirical Correlations for Film-Cooling Effectiveness and Heat Transfer Augmentation
,”
ASME Turbo Expo 2012: Turbine Technical Conference and Exposition
,
Copenhagen, Denmark, June 11–15, American Society of Mechanical Engineers
.
22.
Ingram
,
P. T.
, and
Yavuzkurt
,
S.
,
2013
, “
Derivation of 2-d Empirical Correlations for Film-Cooling Effectiveness and Heat Transfer Augmentation From Spanwise Averaged Data and Correlations
,”
ASME Turbo Expo 2013: Turbine Technical Conference and Exposition
,
San Antonio, TX, June 3–7, American Society of Mechanical Engineers
.
23.
Zhang
,
L.
, and
Fox
,
M.
,
1999
, “
Flat Plate Film Cooling Measurement Using PSP and Gas Chromatograph Techniques
,”
5th ASME/JSME Thermal Engineering Joint Conference
,
San Diego, CA, Mar. 14–19.
24.
Zhang
,
C.
,
Wang
,
J.
,
Liu
,
X.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2020
, “
Experimental and Numerical Study on the Flat-Plate Film Cooling Enhancement Using the Vortex Generator Downstream for the Fan-Shaped Hole Configuration
,”
ASME J. Turbomach.
,
142
(
3
), p.
031006
, 10.1115/1.4046234
25.
Li
,
Y.
,
Zhang
,
Y.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
Experimental and Numerical Investigations of Shaped Hole Film Cooling With the Influence of Endwall Cross Flow
,”
Int. J. Heat. Mass. Transfer.
,
120
, pp.
42
55
. 10.1016/j.ijheatmasstransfer.2017.11.150
26.
Wang
,
H.
,
Tao
,
Z.
, and
Li
,
H.
,
2020
, “
A Tip Region Film Cooling Study of the Fan-Shaped Hole Using PSP
,”
Int. J. Heat. Mass. Transfer.
,
153
, p.
119378
. 10.1016/j.ijheatmasstransfer.2020.119378
27.
Suryanarayanan
,
A.
,
Mhetras
,
S. P.
,
Schobeiri
,
M. T.
, and
Han
,
J. C.
,
2009
, “
Film-Cooling Effectiveness on a Rotating Blade Platform
,”
ASME J. Turbomach.
,
131
(
1
), p.
011014
. 10.1115/1.2752184
28.
Han
,
J. C.
, and
Rallabandi
,
A. P.
,
2010
, “
Turbine Blade Film Cooling Using Psp Technique
,”
Front. Heat Pipes
,
1
(
1
), pp.
227
237
. 10.5098/hmt.v1.1.3001
29.
Shiau
,
C. C.
,
Chowdhury
,
N. H. K.
,
Han
,
J. C.
,
Mirzamoghadam
,
A. V.
, and
Riahi
,
A.
,
2017
, “
Transonic Turbine Vane Suction Side Film Cooling With Showerhead Effect Using PSP Measurement Technique
,”
ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC, June 26–30, American Society of Mechanical Engineers
.
30.
Natsui
,
G.
,
Little
,
Z.
,
Kapat
,
J. S.
,
Dees
,
J. E.
, and
Laskowski
,
G.
,
2016
, “
A Detailed Uncertainty Analysis of Adiabatic Film Cooling Effectiveness Measurements Using Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
138
(
8
), p.
081007
. 10.1115/1.4032674
31.
Boyd
,
E. J.
,
McClintic
,
J. W.
,
Chavez
,
K. F.
, and
Bogard
,
D. G.
,
2017
, “
Direct Measurement of Heat Transfer Coefficient Augmentation at Multiple Density Ratios
,”
ASME J. Turbomach.
,
139
(
1
), p.
011005
. 10.1115/GT2014-27085
32.
Anderson
,
J. B.
,
Wilkes
,
E. K.
,
Mcclintic
,
J. W.
, and
Bogard
,
D. G.
,
2016
, “
Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness on Film Cooling Effectiveness of Shaped Holes
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea, June 13–17, American Society of Mechanical Engineers
.
You do not currently have access to this content.