Abstract

The stators of the first stage of a gas turbine are exposed to severe temperatures. The coolant streams introduced to prevent the stators from thermal damage further complicate the highly three-dimensional vane passage flow. Recent results have shown that the coolant streams injected for cooling the combustor also influence the flow physics and the cooling effectiveness in the first-stage stator vanes passage. However, the effects of changing the mass flowrate of these combustor coolant streams on the passage flowfield have not been studied. As understanding the coolant transport is necessary for analyzing changes in cooling effectiveness in the vane passage, detailed aerodynamic and thermal measurements along the whole vane passage are required. This two-part paper presents such measurements taken for a variety of combustor coolant and endwall film coolant flowrates. The experiments were conducted in a low-Mach number facility with engine-representative Reynolds numbers and large-scale high-level turbulence. The objective of the first part is to describe the flow that influences endwall and vane surface cooling effectiveness distributions, which are presented in the second part. The measurements show changes in the passage flowfield due to changes in both combustor coolant and endwall film coolant flowrates. Overall, the flow physics remains largely unaffected by changes in coolant flowrates except in the endwall-vane surfaces region where the combustor coolant flowrate dominates changes in coolant transport. This is shown to have a high impact on endwall and vane surface cooling.

References

1.
Sedney
,
R.
, and
Kitchens
,
C. W.
Jr.
,
1975
, “
The Structure of Three-Dimensional Separated Flows in Obstacle, Boundary Layer Interactions
,” AGARD-CP-168 on Flow Separation. https://apps.dtic.mil/sti/citations/ADA011254
2.
Goldstein
,
R. J.
, and
Karni
,
J.
,
1984
, “
The Effect of a Wall Boundary Layer on Local Mass Transfer From a Cylinder in Crossflow
,”
J. Heat Trans.
,
106
(
2
), pp.
260
267
. https://doi.org/10.1115/1.3246667
3.
Langston
,
L. S.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
J. Eng. Power
,
102
(
4
), pp.
866
874
. https://doi.org/10.1115/1.3230352
4.
Goldstein
,
R. J.
, and
Spores
,
R. A.
,
1988
, “
Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades
,”
J. Heat Trans.
,
110
(
4a
), pp.
862
869
. https://doi.org/10.1115/1.3250586
5.
Wang
,
H. P.
,
Olson
,
S. J.
,
Goldstein
,
R. J.
, and
Eckert
,
E. R. G.
,
1997
, “
Flow Visualization in a Linear Turbine Cascade of High Performance Turbine Blades
,”
ASME J. Turbomach.
,
119
(
1
), pp.
1
8
. https://doi.org/10.1115/1.2841006
6.
Blair
,
M. F.
,
1974
, “
An Experimental Study of Heat Transfer and Film Cooling on Large-Scale Turbine Endwalls
,”
J. Heat Trans.
,
96
(
4
), pp.
524
529
. https://doi.org/10.1115/1.3450239
7.
Sieverding
,
C. H.
, and
Wilputte
,
P.
,
1981
, “
Influence of Mach Number and Endwall Cooling on Secondary Flows in a Straight Nozzle Cascade
,”
J. Eng. Power
,
103
(
2
), pp.
257
263
. https://doi.org/10.1115/1.3230713
8.
Goldman
,
L. J.
, and
McLallin
,
K. L.
,
1977
, “
Effect of Endwall Cooling on Secondary Flows in Turbine Stator Vanes
,” AGARD, CPP-214, https://ntrs.nasa.gov/search.jsp?R=19770049387
9.
Friedrichs
,
S.
,
Hodson
,
H. P.
, and
Dawes
,
W. N.
,
1997
, “
Aerodynamic Aspects of Endwall Film-Cooling
,”
ASME J. Turbomach.
,
119
(
4
), pp.
786
793
. https://doi.org/10.1115/1.2841189
10.
Ewen
,
J. S.
,
Huber
,
F. W.
, and
Mitchell
,
J. P.
,
1973
, “
Investigation of the Aerodynamic Performance of Small Axial Turbines
,”
J. Eng. Power
,
95
(
4
), pp.
326
332
. https://doi.org/10.1115/1.3445739
11.
Morris
,
A. W. H.
, and
Hoare
,
R. G.
,
1975
, “
Secondary Loss Measurements in a Cascade of Turbine Blades with Meridional Wall Profiling
,” ASME Paper No. 75-WA/GT-13.
12.
Kopper
,
F. C.
,
Milanot
,
R.
, and
Vancot
,
M.
,
1981
, “
Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade
,”
AIAA J.
,
19
(
8
), pp.
1033
1040
. https://doi.org/10.2514/3.51032
13.
Burd
,
S. W.
, and
Simon
,
T. W.
,
2000
, “
Flow Measurements in a Nozzle Guide Vane Passage with a Low Aspect Ratio and Endwall Contouring
,”
ASME J. Turbomach.
,
122
(
4
), pp.
659
666
. https://doi.org/10.1115/1.1312799
14.
Schuepbach
,
P. P.
,
Abhari
,
R. S.
,
Rose
,
M. G.
, and
Gier
,
J. J.
,
2010
, “
Influence of Rim Seal Purge Flow on the Performance of an Endwall-Profiled Axial Turbine
,”
ASME J. Turbomach.
,
133
(
2
). https://doi.org/10.1115/1.4000578
15.
Piggush
,
J. D.
, and
Simon
,
T. W.
,
2012
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME J. Turbomach.
,
135
(
1
). https://doi.org/10.1115/1.4006419
16.
Colban
,
W. F.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
193
202
. https://doi.org/10.1115/1.1561811
17.
Colban
,
W. F.
,
Lethander
,
A. T.
,
Thole
,
K. A.
, and
Zess
,
G. G.
,
2003
, “
Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements
,”
ASME J. Turbomach.
,
125
(
2
), pp.
203
209
. https://doi.org/10.1115/1.1561812
18.
Hermanson
,
K. S.
, and
Thole
,
K. A.
,
2002
, “
Effect of Nonuniform Inlet Conditions on Endwall Secondary Flows
,”
ASME J. Turbomach.
,
124
(
4
), pp.
623
631
. https://doi.org/10.1115/1.1505849
19.
Saxena
,
R.
,
Alqefl
,
M. H.
,
Liu
,
Z.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2016
, “
Contoured Endwall Flow and Heat Transfer Experiments with Combustor Coolant and Gap Leakage Flows for a Turbine Nozzle Guide Vane
,”
Proceedings of the ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Volume 5C: Heat Transfer. Seoul
,
South Korea
,
June 13–17, 2016
, p.
V05CT19A013
, https:/doi.org/10.1115/GT2016-56675
20.
Alqefl
,
M. H.
,
Kim
,
Y. W.
,
Moon
,
H.-K.
,
Zhang
,
L.
, and
Simon
,
T. W.
,
2018
, “
Aerodynamic Measurements and Analysis in a First Stage Nozzle Guide Vane Passage with Combustor Liner Cooling, Slot Film Cooling and Endwall Contouring
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, Volume 2B: Turbomachinery
,
Oslo, Norway
,
June 11–15, 2018
, p.
V02BT41A022
, https://doi.org/10.1115/GT2018-76345
21.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 1: Aerodynamics
,”
Proceedings of ASME Turbo Expo 2020
,
Sept. 21–25, 2020
, p.
GT2020-15926
.
22.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Aero-Thermal Aspects of Film Cooled Nozzle Guide Vane Endwalls—Part 2: Thermal Measurements
,”
Proceedings of ASME Turbo Expo 2020
,
Sept. 21–25, 2020
, p.
GT2020-15076
.
23.
Alqefl
,
M. H.
,
Nawathe
,
K. P.
,
Chen
,
P.
,
Zhu
,
R.
,
Kim
,
Y. W.
, and
Simon
,
T. W.
,
2020
, “
Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane
,”
Proceedings of ASME Turbo Expo 2020
,
Sept. 21–25, 2020
, p.
GT2020-15746
.
24.
Burd
,
S. W.
,
1998
, “
Secondary Flow and Heat Transfer Control in Gas Turbine Inlet Nozzle Guide Vanes
,”
Ph.D. thesis
,
University of Minnesota
, https://www.proquest.com/docview/304437123
25.
Oke
,
R.
,
2001
, “
Measurements in a Gas Turbine First Stage Nozzle Guide Vane Cascade with Film Cooling and Endwall Contouring
,”
Ph.D. thesis
,
University of Minnesota
.
26.
Piggush
,
J. D.
,
2005
, “
An Experimental Investigation of Endwall Leakage Flows and Misalignment in Gas Turbine Nozzle Guide Vane
,”
M.S. thesis
,
University of Minnesota
.
27.
Erickson
,
R. D.
,
2010
, “
Experimental Investigation of Disc Cavity Leakage Flow and Hub Endwall Contouring in a Linear Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/90852
28.
Ayaskanta
,
A.
,
2013
, “
Experimental Investigation of the Effect of Engine Representative Combustor Exit Temperature Profile and Disc Cavity Leakage Flow on the Film Cooling of Contoured Hub Endwall of a High Pressure Gas Turbine Rotor Cascade
,”
M.S. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/156570
29.
Saxena
,
R.
,
2015
, “
Experimental Cascade Simulation of First Stage High Pressure Gas Turbine With Effects of Leakage Flow and Contouring on Endwall Film Cooling
,”
M.S. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/174711
30.
Alqefl
,
M. H.
,
2016
, “
An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane With Slot Film Cooling
,”
M.S. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/185103
31.
Alqefl
,
M. H.
,
2019
, “
Aero-Thermal Aspects of Endwall Cooling Flows in a Gas Turbine Nozzle Guide Vane
,”
Ph.D. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/202115
32.
Nawathe
,
K. P.
,
2019
, “
Experiments on Film Cooling of Gas Turbine Vane Passage Surfaces: The Effects of Various Distributions of Combustor Coolant and Endwall Injection Coolant
,”
M.S. thesis
,
University of Minnesota
, http://hdl.handle.net/11299/208850
33.
Sinha
,
A. K.
,
Bogard
,
D. G.
, and
Crawford
,
M. E.
,
1991
, “
Film-Cooling Effectiveness Downstream of a Single Row of Holes With Variable Density Ratio
,”
ASME J. Turbomach.
,
113
(
3
), pp.
442
449
. https://doi.org/10.1115/1.2927894
34.
Ames
,
F. E.
,
1997
, “
The Influence of Large-Scale High-Intensity Turbulence on Vane Heat Transfer
,”
ASME J. Turbomach.
,
119
(
1
), pp.
23
30
. https://doi.org/10.1115/1.2841007
You do not currently have access to this content.