Abstract

This article shows the first parametric study on turbulent multi-jet impingement cooling flows using large-eddy simulations (LES). We focus on assessing the influence of the inter-jet distance and the cross-flow conditions on the heat transfer at the impingement wall. The LES setup is thoroughly validated with both experimental and direct numerical simulation data, showing an excellent agreement. The inter-jet distance effect on the heat transfer is studied comparing three different distances, where the full Nusselt number profile decreases in amplitude when the jet distance is increased. To evaluate the cross-flow effects, we prescribe both laminar and turbulent inflow conditions at different cross-flow magnitudes ranging between 20% and 40% of the impinging jet speed. Large cross-flow intensities cause a jet deflection that reduces the maxima in the Nusselt number distribution, and it increases the heat transfer in the areas of the wall less affected by the jet impingement. Adding realistic turbulent fluctuations to the inflow enhances the cross-flow effects on the heat transfer at the impingement wall.

References

1.
Gauntner
,
J. W.
,
Hrycak
,
P.
, and
Livingood
,
J. N. B.
,
1970
, “Survey of Literature of Flow Characteristics of a Single Turbulent Jet, Impinging on a Flat Surface,” NASA TN D-5652.
2.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
,
1992
, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
,
13
(
2
), pp.
106
115
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Colucci
,
D. W.
, and
Viskanta
,
R.
,
1996
, “
Effect of Nozzle Geometry on Local Convective Heat Transfer to a Confined Impinging Air Jet
,”
Exp. Therm. Fluid Sci.
,
13
(
1
), pp.
71
80
.
5.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.
6.
Lytle
,
D.
,
1991
, “
Secondary Heat Transfer Maxima for Air Jet Impingement At Low Nozzle-to-Plate Spacings
,”
Exp. Heat Transf., Fluid Mech. Thermodyn.
,
37
(
12
), pp.
776
783
.
7.
Lee
,
J.
, and
Lee
,
S.
,
1999
, “
Stagnation Region Heat Transfer of a Turbulent Axisymmetric Jet Impingement
,”
Exp. Heat Transfer
,
12
(
2
), pp.
137
156
.
8.
Katti
,
V.
, and
Prabhu
,
S.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17
), pp.
4480
4495
.
9.
Popiel
,
C. O.
, and
Trass
,
O.
,
1991
, “
Visualization of a Free and Impinging Round Jet
,”
Exp. Therm. Fluid Sci.
,
4
(
3
), pp.
253
264
.
10.
Hadžiabdić
,
M.
, and
Hanjalić
,
K.
,
2008
, “
Vortical Structures and Heat Transfer in a Round Impinging Jet
,”
J. Fluid Mech.
,
596
, pp.
221
260
.
11.
Jefferson-Loveday
,
R. J.
, and
Tucker
,
P. G.
,
2011
, “
Wall-Resolved LES and Zonal LES of Round Jet Impingement Heat Transfer on a Flat Plate
,”
Numer. Heat Transfer B
,
59
(
3
), pp.
190
208
.
12.
Uddin
,
N.
,
Neumann
,
S. O.
, and
Weigand
,
B.
,
2013
, “
LES Simulations of An Impinging Jet: On the Origin of the Second Peak in the Nusselt Number Distribution
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
356
368
.
13.
Dairay
,
T.
,
Fortuné
,
V.
,
Lamballais
,
E.
, and
Brizzi
,
L.
,
2014
, “
LES of a Turbulent Jet Impinging on a Heated Wall Using High-Order Numerical Schemes
,”
Int. J. Heat Fluid Flow
,
50
, pp.
177
187
.
14.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J.-C.
,
1998
, “
Detailed Heat Transfer Distributions Under An Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
15.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2010
, “
Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets
,”
ASME J. Heat Transfer
,
132
(
9
), p.
092201
.
16.
Weigand
,
B.
, and
Spring
,
S.
,
2011
, “
Multiple Jet Impingement – A Review
,”
Heat Transfer Res.
,
42
(
2
), pp.
101
142
.
17.
Xing
,
Y.
,
Spring
,
S.
, and
Weigand
,
B.
,
2011
, “
Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-rib Roughened Plate With Different Crossflow Schemes
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1293
1307
.
18.
Neil Jordan
,
C.
,
Wright
,
L. M.
, and
Crites
,
D. C.
,
2016
, “
Impingement Heat Transfer on a Cylindrical, Concave Surface With Varying Jet Geometries
,”
ASME J. Heat Transfer
,
138
(
12
), p.
122202
.
19.
Wang
,
N.
,
Chen
,
A. F.
,
Zhang
,
M.
, and
Han
,
J.-C.
,
2018
, “
Turbine Blade Leading Edge Cooling With One Row of Normal Or Tangential Impinging Jets
,”
ASME J. Heat Transfer
,
140
(
6
), p.
062201
.
20.
Yang
,
L.
,
Ren
,
J.
,
Jiang
,
H.
, and
Ligrani
,
P.
,
2014
, “
Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage
,”
Int. J. Heat Mass Transfer
,
71
, pp.
57
68
.
21.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.
22.
Pichler
,
R.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Ong
,
J.
,
2018
, “
Highly Resolved Large Eddy Simulation Study of Gap Size Effect on Low-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
2
), p.
021003
.
23.
Leggett
,
J.
,
Priebe
,
S.
,
Shabbir
,
A.
,
Michelassi
,
V.
,
Sandberg
,
R.
, and
Richardson
,
E.
,
2018
, “
Loss Prediction in An Axial Compressor Cascade At Off-Design Incidences With Free Stream Disturbances Using Large Eddy Simulation
,”
ASME J. Turbomach.
,
140
(
7
), p.
071005
.
24.
Otero-Pérez
,
J. J.
, and
Sandberg
,
R. D.
,
2020
, “
Compressibility and Variable Inertia Effects on Heat Transfer in Turbulent Impinging Jets
,”
J. Fluid Mech.
,
887
, p.
A15
.
25.
Freund
,
J. B.
,
2001
, “
Noise Sources in a Low-Reynolds-Number Turbulent Jet At Mach 0.9
,”
J. Fluid Mech.
,
438
, pp.
277
305
.
26.
Dairay
,
T.
,
Fortuné
,
V.
,
Lamballais
,
E.
, and
Brizzi
,
L.
,
2015
, “
Direct Numerical Simulation of a Turbulent Jet Impinging on a Heated Wall
,”
J. Fluid Mech.
,
764
, pp.
362
394
.
27.
Wilke
,
R.
, and
Sesterhenn
,
J.
,
2017
, “
Statistics of Fully Turbulent Impinging Jets
,”
J. Fluid Mech.
,
825
, pp.
795
824
.
28.
Klein
,
M.
,
Sadiki
,
A.
, and
Janicka
,
J.
,
2003
, “
A Digital Filter Based Generation of Inflow Data for Spatially Developing Direct Numerical Or Large Eddy Simulations
,”
J. Comput. Phys.
,
186
(
2
), pp.
652
665
.
29.
Moser
,
R. D.
,
Kim
,
J.
, and
Mansour
,
N. N.
,
1999
, “
Direct Numerical Simulation of Turbulent Channel Flow Up to R e τ = 590
,”
Phys. Fluids
,
11
(
4
), pp.
943
945
.
You do not currently have access to this content.