Abstract

In analogy with the classical concept of mass-flux-based streamlines, we define angular momentum transport (AMT) lines as an aerodynamic functional diagnostic tool. The AMT lines are the ones whose tangents are given by the average angular momentum flux. The mathematical and physical properties of these AMT lines are exploited to study the generation, removal, and transport of angular momentum in turbomachinery components. We illustrate the concept by visualizing AMT lines in two relatively simple flows, namely, vaneless incompressible diffuser and von Karman flow (a model of centrifugal compressors). Next, we apply the proposed diagnostic tool to flow in a return channel. A return channel is a part of a multistage centrifugal compressor stage. Its principal function is to remove angular momentum. In this work, we apply the diagnostic tool of AMT lines to a Reynolds-averaged Navier Stokes (RANS) simulation and a wall-modeled large eddy simulation (LES) of flow in the return channel. We show that AMT lines give us insights into the AMT process that are otherwise not available with conventional visualization tools.

References

1.
Kimura
,
S.
, and
Bejan
,
A.
,
1983
, “
The ‘Heatline’ Visualization of Convective Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
105
(
4
), pp.
916
919
.
2.
Aggarwal
,
S. K.
, and
Manhapra
,
A.
,
1989
, “
Use of Heatlines for Unsteady Buoyancy-Driven Flow in a Cylindrical Enclosure
,”
ASME J. Heat Transfer-Trans. ASME
,
111
(
2
), p.
5
.
3.
Dash
,
S. K.
,
1996
, “
Heatline Visualization in Turbulent Flow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
6
(
4
), pp.
37
46
.
4.
Ho
,
C.-J.
,
Lin
,
Y.
, and
Chen
,
T.-C.
,
1989
, “
A Numerical Study of Natural Convection in Concentric and Eccentric Horizontal Cylindrical Annuli With Mixed Boundary Conditions
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
40
47
.
5.
Morega
,
A. M.
, and
Bejan
,
A.
,
1993
, “
Heatline Visualization of Forced Convection Laminar Boundary Layers
,”
Int. J. Heat Mass Transfer
,
36
(
16
), pp.
3957
3966
.
6.
Mukhopadhyay
,
A.
,
Qin
,
X.
,
Puri
,
I. K.
, and
Aggarwal
,
S. K.
,
2003
, “
Visualization of Scalar Transport in Nonreacting and Reacting Jets Through a Unified “Heatline” and “Massline” Formulation
,”
Numer. Heat Transfer
,
44
(
7
), pp.
683
704
.
7.
Morega
,
A. M.
,
1988
, “
Magnetic Field Influence on the Convective Heat Transfer in Solidification Processes. I. Revue roumaine des sciences techniques
,”
Electrotechnique et énergétique
,
33
(
1
), pp.
33
39
.
8.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
John Wiley & Sons
,
Hoboken, NJ
.
9.
Costa
,
V. A. F.
,
2006
, “
Bejan’s Heatlines and Masslines for Convection Visualization and Analysis
,”
Appl. Mech. Rev.
,
59
(
3
), pp.
126
145
.
10.
Meyers
,
J.
, and
Meneveau
,
C.
,
2013
, “
Flow Visualization Using Momentum and Energy Transport Tubes and Applications to Turbulent Flow in Wind Farms
,”
J. Fluid Mech.
,
715
, pp.
335
358
.
11.
Lamberts
,
O.
,
Bartosiewicz
,
Y.
, and
Chatelain
,
P.
,
2016
, “
On the Use of Momentum and Kinetic Energy Tubes for Analyzing Transport Phenomena in a Supersonic Ejector
,”
12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics
,
Costa de Sol, Spain
,
July 13
.
12.
Wu
,
W.
,
Mittal
,
R.
, and
Meneveau
,
C.
,
2020
, “
Total Mechanical Energy Transport Lines and Attractors in Separating Turbulent Boundary Layers
,”
Phys. Rev. Fluids
,
5
(
1
), p.
012601
.
13.
Raupach
,
M. R.
, and
Shaw
,
R.
,
1982
, “
Averaging Procedures for Flow Within Vegetation Canopies
,”
Boundary-Layer Meteorol.
,
22
(
1
), pp.
79
90
.
14.
Adamczyk
,
J. J.
,
1984
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
.”
ASME Paper No. 85-GT-226
.
15.
Xie
,
Z.-T.
, and
Fuka
,
V.
,
2018
, “
A Note on Spatial Averaging and Shear Stresses Within Urban Canopies
,”
Boundary-Layer Meteorol.
,
167
(
1
), pp.
171
179
.
16.
Jariwala
,
V.
,
Larosiliere
,
L.
, and
Hardin
,
J.
,
2016
, “
Design Exploration of a Return Channel for Multistage Centrifugal Compressors
,”
ASME Turbo Expo
,
Seoul, South Korea
,
June 13
, Vol. 49729, American Society of Mechanical Engineers, p. V02DT42A032.
17.
Xu
,
H.
,
Yang
,
X.
,
Jariwala
,
V.
, and
Larosiliere
,
L.
,
2021
, “
Comparative Aerodynamic Assessment of a Multistage Centrifugal Compressor Return Channel Based on RANS and LES
,”
AIAA SciTech
,
Virtual
,
Nov. 1
.
18.
Khalighi
,
Y.
,
Ham
,
F.
,
Nichols
,
J.
,
Lele
,
S.
, and
Moin
,
P.
,
2011
, “
Unstructured Large Eddy Simulation for Prediction of Noise Issued From Turbulent Jets in Various Configurations
,”
32nd AIAA Aeroacoustics Conference
,
Portland, OR
,
May 6
, AIAA Paper, p.
2886
.
19.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
20.
Mahesh
,
K.
,
Constantinescu
,
G.
, and
Moin
,
P.
,
2004
, “
A Numerical Method for Large-Eddy Simulation in Complex Geometries
,”
J. Comput. Phys.
,
197
(
1
), pp.
215
240
.
21.
Moin
,
P.
,
2010
,
Fundamentals of Engineering Numerical Analysis
,
Cambridge University Press
,
New York
.
22.
Vreman
,
B.
,
Geurts
,
B.
, and
Kuerten
,
H.
,
1994
, “
On the Formulation of the Dynamic Mixed Subgrid-Scale Model
,”
Phys. Fluids
,
6
(
12
), pp.
4057
4059
.
23.
Yang
,
X. I.
,
Park
,
G. I.
, and
Moin
,
P.
,
2017
, “
Log-Layer Mismatch and Modeling of the Fluctuating Wall Stress in Wall-Modeled Large-Eddy Simulations
,”
Phys. Rev. Fluids
,
2
(
10
), p.
104601
.
24.
Cochran
,
W.
,
1934
, “
The Flow Due to a Rotating Disc
,”
Math. Proc. Cambr. Philos. Soc.
,
30
(
3
), pp.
365
375
.
You do not currently have access to this content.